李荣峰,沈冰,张金凯.基于相空间重构的水文自记忆预测模型[J].水利学报,2006,37(5):583-587 |
基于相空间重构的水文自记忆预测模型 |
Self-memory hydrologic prediction model based on phase-space reconstitution |
|
DOI: |
中文关键词: 水文时间序列 相空间自记忆模型 动力模式反演 预测方法 |
英文关键词: hydrologic time series self memory model phase space reconstitution dynamic inversion prediction |
基金项目: |
|
摘要点击次数: 2362 |
全文下载次数: 496 |
中文摘要: |
混沌理论为研究复杂多变的非线性水文时间序列开辟了新的途径。本文在相空间重构的基础上,反演了水文系统动力模式,据此进一步建立了相空间自记忆预测模型,并将该模型应用于月径流量预测。实例表明,该模型能较好地处理复杂的水文数据序列,且有较好的预测精度。 |
英文摘要: |
The theory of chaos is applied to study the complicated hydrological time series with nonlinear characteristics. Based on phase space reconstitution the nonlinear dynamic mode of hydrologic system is inversely transformed and a self memory hydrologic prediction model is established. The application of the proposed model to predict the monthly runoff shows that it can effectively dealing with the complicated hydrological time series with preferable precision. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |