文章摘要
融合结构增强机制的洪水预报机器学习模型研究
A Machine Learning Model for Flood Forecasting Enhanced by Structural Mechanisms
投稿时间:2025-06-10  修订日期:2025-10-16
DOI:
中文关键词: 洪水预报  机器学习  动态滞后编码  径流过程矢量化  事件驱动特征
英文关键词: flood forecasting  machine learning  dynamic lag encoding  runoff process vectorization  event-driven features
基金项目:国家重点研发计划项目(2023YFC3209303);黔科合一般[206](2023);黔科合一般[130](2024)
作者单位邮编
王慧亮 郑州大学水利与交通学院 450001
张艳猛 郑州大学水利与交通学院 
荐圣淇* 郑州大学水利与交通学院 450001
余欣 黄河水利委员会黄河水利科学研究院 
摘要点击次数: 4
全文下载次数: 0
中文摘要:
      针对既有洪水预报机器学习模型在复杂雨型与滞后响应条件下存在结构刚性与洪峰预报偏差的问题,本研究提出一种融合结构增强机制的洪水预报机器学习模型 (ML-P-EF)。该方法引入径流过程矢量化、动态滞后编码和事件驱动特征3类结构特征,分别从过程结构、时滞响应和事件属性等3个方面进行洪水预报输入数据的处理。以黄河中游4个典型流域为验证对象,基于长短期记忆网络 (LSTM)、人工神经网络 (ANN)与Transformer3种基础模型结构,构建出3种过程增强模型和3种全结构增强模型,开展1h、3h、6h预见期的洪水预报。结果表明,在6h预见期下,ML-P-EF模型平均纳什效率系数 (NSE)分别提高了0.725、0.188 (从基础模型ML的0.212和过程增强模型ML-P的0.749提升至0.937),均方根误差 (RMSE)降低约62.77%,洪峰误差平均减少56.74%;以大宁站为例,LSTM结构模型NSE由0.165 (基础模型)增长到0.775 (过程增强模型)后提升至0.982 (全结构增强模型),RMSE从46.11 m3/s降到23.96 m3/s后降至6.75?m3/s,洪峰误差由-68.41%降到-41.48%后降至+3.32%。本研究构建的ML-P-EF全结构增强模型在峰值响应、时序拟合与误差控制方面显著优于基础模型,尤其在6h预见期下展现出更强的泛化能力与稳定性。研究成果可为流域洪水预报提供一种具有结构感知能力的建模新路径。
英文摘要:
      To address the structural rigidity and peak flow forecast deviations in existing machine learning models for flood forecasting under complex rainfall patterns and delayed response conditions, this study proposes a machine learning model for flood forecasting integrated with a process-enhanced mechanism (ML-P-EF). This method introduces three types of structural features: Runoff Process Vectorization, Dynamic Lag Encoding, and Event-Driven Features, which process the input data for flood forecasting from the aspects of process structure, time-lag response, and event attributes, respectively. Using four typical watersheds in the middle reaches of the Yellow River as validation cases, and based on three fundamental model structures (Long Short-Term Memory (LSTM), Artificial Neural Network (ANN), and Transformer), we constructed three process-enhanced models and three full-structure-enhanced models to conduct flood forecasting with lead times of 1h, 3h, and 6h. The results demonstrate that under the 6h lead time condition, the ML-P-EF model improved the average Nash-Sutcliffe Efficiency (NSE) by 0.725 and 0.188 (increasing from the basic model ML's 0.212 and the process-enhanced model ML-P's 0.749 to 0.937), reduced the Root Mean Square Error (RMSE) by approximately 62.77%, and decreased the peak flow error by an average of 56.74%. Taking the Daning Station as an example, the NSE of the LSTM-structured model increased from 0.165 (basic model) to 0.775 (process-enhanced model) and further to 0.982 (full-structure-enhanced model), while the RMSE decreased from 46.11 m3/s to 23.96 m3/s and then to 6.75 m3/s, and the peak flow error changed from -68.41% to -41.48% and finally to +3.32%. The ML-P-EF full-structure-enhanced model developed in this study significantly outperforms the basic model in peak response, temporal fitting, and error control, particularly demonstrating stronger generalization capability and stability under the 6h lead time condition. The research findings provide a new structural awareness modeling approach for watershed flood forecasting.
  查看/发表评论  下载PDF阅读器
关闭