|
| 吸入涡和淹没深度对离心泵压力脉动及振动的影响 |
| Influence of suction vortex and submergence depth on pressure pulsation and vibration of a centrifugal pump |
| 投稿时间:2025-08-15 修订日期:2025-12-12 |
| DOI: |
| 中文关键词: 泵站 吸入涡 淹没深度 压力脉动 振动 |
| 英文关键词: Pumping station Suction vortex Submergence depth Pressure fluctuation Vibration |
| 基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目) |
|
| 摘要点击次数: 28 |
| 全文下载次数: 0 |
| 中文摘要: |
| 泵站运行过程中在低水深情况下不可避免地引入吸入涡,导致强烈的水力激振,威胁泵站安全运行。本研究基于立式离心泵实验平台,通过实验方法探究了不同淹没深度下离心泵吸入涡诱发的压力脉动与振动特性,采用高速摄像捕捉了11种不同淹没深度下的吸入涡形态演变规律,同步采集了压力脉动和振动信号。结果表明:当淹没深度低于临界值时,吸入涡从稳定贯通态逐渐发展为携气破碎态,涡核尺度增大且稳定性降低。压力脉动分析显示,低淹没深度下吸入涡诱导的低频脉动取代叶频成为主导频率,峰峰值提升62%,且最大峭度增至5.2,流动冲击性显著增强。振动信号特征表明,轴向振动幅值随淹没深度降低增长90%,径向振动的非对称性随淹没深度降低而加剧。传递熵分析证实低频压力脉动是振动加剧的主要激励源。本研究揭示出吸入涡破坏流动对称性并诱发水力激振的机理,为泵站安全运行提供理论依据。 |
| 英文摘要: |
| During pump station operation, suction vortices inevitably form under low submergence depth, causing severe hydraulic vibrations that threaten operational safety. This study investigates vortex-induced pressure fluctuations and vibrations in a vertical centrifugal pump under different submergence depths. High-speed imaging captured the evolution of vortex patterns across 11 submergence depths, while synchronized pressure pulsation and vibration data are recorded. Key findings reveal that when submergence depth falls below a critical level, vortices transition from stable structures to air-entrained fragmented states, exhibiting enlarged vortex cores and reduced stability. Pressure pulsation analysis demonstrates that under low submergence, vortex-induced low-frequency pressure fluctuations replace blade-passing frequency as the dominant component, with peak-to-peak amplitudes increasing by 62% and maximum kurtosis reaching 5.2, indicating intensified flow impacts. Vibration analysis shows a 90% growth in axial vibration amplitude and heightened radial vibration asymmetry with decreasing submergence depth. Transfer entropy analysis identifies low-frequency pressure pulsations as the primary excitation source for amplified vibrations. The study elucidates how vortices disrupt flow symmetry and trigger hydraulic excitation, offering theoretical insights for pump station safety. |
|
查看/发表评论 下载PDF阅读器 |
| 关闭 |
|
|
|