| 丁武,杨芳,王卫光,王汉岗,何用,蔺崇哲.二维水动力模型多GPU分布式数据并行计算方法研究[J].水利学报,2025,56(12):1647-1658 |
| 二维水动力模型多GPU分布式数据并行计算方法研究 |
| Research on multi-GPU distributed data parallel computing methods for 2D hydrodynamic models |
| 投稿时间:2025-05-07 修订日期:2025-12-23 |
| DOI:10.13243/j.cnki.slxb.20250262 |
| 中文关键词: 二维水动力模型 有限体积法 计算域分割 NCCL 异构计算 |
| 英文关键词: 2D hydrodynamic model finite volume method computational domain partitioning NCCL communica? tion heterogeneous parallel computing |
| 基金项目:国家重点研发计划项目(2024YFC3212000) |
|
| 摘要点击次数: 12 |
| 全文下载次数: 16 |
| 中文摘要: |
| 针对二维水动力模型在复杂流域洪水模拟中的算力瓶颈,本研究构建了基于物理拓扑分域与基于分布式数据并行及NCCL异步通信融合的多GPU异构并行架构,实现非结构三角网格水动力模型的超算级加速。通过物理拓扑保持型计算域分割算法,在保障非结构三角网格邻接关系完整性的同时,实现多GPU间的动态负载均衡;结合基于Godunov有限体积法的分布式数据并行求解框架与NCCL异步通信策略,构建了“计算-通信”协同的异构加速架构。实验验证表明:在二维理想溃坝算例中,模型能精准捕捉溃坝激波传播特征,与理论解保持高度一致。在崂山水库溃坝洪水模拟案例中,利用8块GPU并行计算实现了15.70 s完成2 h的溃坝洪水演进模拟,取得了308.43倍的加速比,其中各子域间的数据通信效率较传统MPI提升了8.67%。该架构支持单节点至跨节点GPU集群的弹性扩展,可为数字孪生流域提供秒级响应的超算级水动力引擎,为推动防洪预报调度从静态预案向动态预演范式提供核心技术支撑。 |
| 英文摘要: |
| To address the computational bottlenecks of 2D hydrodynamic models for flood simulation of complex watersheds,this study develops a multi-GPU heterogeneous parallel architecture based on physical topology-based domain partitioning and integration of distributed data parallelism with NCCL asynchronous communication,enabling supercomputing-level acceleration for unstructured triangular mesh-based hydrodynamic models. Through a physical topology-preserving domain partitioning algorithm,dynamic load balancing across multiple GPUs was achieved, while ensuring the integrity of adjacency relationships within unstructured triangular meshes. By combining a distributed data parallel solution framework based on the Godunov finite volume method with an NCCL asynchronous com munication strategy,a heterogeneous acceleration architecture with "computation-communication" collaboration was established. Experimental validation shows that,in a 2D idealized dam-break test case,the model accurately captured the propagation characteristics of the dam-break shock waves,maintaining high consistency with theoretical solutions. In the case study of the Laoshan Reservoir dam-break flood simulation,the 2-hour flood evolution simulation was completed in just 15.70 s using 8 GPUs for parallel computing,achieving a speedup of 308.43 times. Furthermore,the data communication efficiency between subdomains improved by 8.67% compared to traditional MPIbased methods. The proposed architecture supports elastic scaling from single-node to cross-node GPU clusters,providing a supercomputing-level hydrodynamic engine with second-level response capabilities for digital twin watersheds. It offers core technological support for advancing flood forecasting and dispatching from static planning toward dynamic rehearsal paradigms. |
|
查看全文
查看/发表评论 下载PDF阅读器 |
| 关闭 |