Page 83 - 水利学报2021年第52卷第1期
P. 83
[ 8 ] SHAO C F,GU C S,YANG M,et al . A novel model of dam displacement based on panel data[J]. Structural
Control and Health Monitoring,2018 . doi:10.1002/stc.2037.
[ 9 ] SU H Z,LI X,YANG B B,et al . Wavelet support vector machine-based prediction model of dam deformation
[J]. Mechanical Systems and Signal Processing,2018,110:412-427 .
[ 10] LI M C,SHEN Y,REN Q B,et al . A new distributed time series evolution prediction model for dam deformation
based on constituent elements[J]. Advanced Engineering Informatics,2019,39:41-52 .
[ 11] KANG F,LI J J,DAI J H . Prediction of long-term temperature effect in structural health monitoring of concrete
dams using support vector machines with Jaya optimizer and salp swarm algorithms[J]. Advances in Engineering
Software,2019,131:60-76 .
[ 12] WANG S W,XU Y L,GU C S,et al . Hysteretic effect considered monitoring model for interpreting abnormal de⁃
formation behavior of arch dams:A case study[J] . Structural Control and Health Monitoring,2019 . doi:
10.1002/stc.2417.
[ 13] WEI B,CHEN L,LI H,et al . Optimized prediction model for concrete dam displacement based on signal residu⁃
al amendment[J]. Applied Mathematical Modelling,2020,78:20-36 .
[ 14] 李明超,任秋兵,沈扬 . 贝叶斯框架下的大坝变形交互式时变预测模型及其验证[J]. 水利学报,2018,49
(11):1328-1338 .
[ 15] 李明超,任秋兵,孔锐,等 . 多维复杂关联因素下的大坝变形动态建模与预测分析[J]. 水利学报,2019,
50(6):687-698 .
[ 16] 钟登华,王飞,吴斌平,等 . 从数字大坝到智慧大坝[J]. 水力发电学报,2015,34(10):1-13 .
[ 17] 钟登华,时梦楠,崔博,等 . 大坝智能建设研究进展[J]. 水利学报,2019,50(1):38-52,61 .
[ 18] 李庆斌,林鹏 . 论智能大坝[J]. 水力发电学报,2014,33(1):139-146 .
[ 19] 李庆斌,石杰 . 大坝建设 4.0[J]. 水力发电学报,2015,34(8):1-6 .
[ 20] 任秋兵,李明超,杜胜利,等 . 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究[J]. 水利学报,
2019,50(10):1200-1213 .
[ 21] HINTON G E,SALAKHUTDINOV R R . Reducing the dimensionality of data with neural networks[J]. Science,
2006,313(5786):504-507 .
[ 22] LECUN Y,BENGIO Y,HINTON G . Deep learning[J]. Nature,2015,521(7553):436-444 .
[ 23] HOCHREITER S,SCHMIDHUBER J . Long short-term memory[J] . Neural Computation,1997,9(8):
1735-1780 .
[ 24] 杨背背,殷坤龙,杜娟 . 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学
报,2018,37(10):131-140 .
[ 25] ZHANG J F,ZHU Y,ZHANG X P,et al . Developing a Long Short-Term Memory(LSTM)based model for pre⁃
dicting water table depth in agricultural areas[J]. Journal of Hydrology,2018,561:918-929 .
[ 26] RIBEIRO L S,WILHELM V E,FARIA É F,et al . A comparative analysis of long-term concrete deformation
models of a buttress dam[J]. Engineering Structures,2019,193:301-307 .
[ 27] ZHANG J,CAO X Y,XIE J M,et al . An improved long short-term memory model for dam displacement predic⁃
tion[J]. Mathematical Problems in Engineering,2019 . doi:10.1155/2019/6792189.
[ 28] QU X D,YANG J,CHANG M . A deep learning model for concrete dam deformation prediction based on
RS-LSTM[J]. Journal of Sensors,2019 . doi:10.1155/2019/4581672.
[ 29] 胡安玉,包腾飞,杨晨蕾,等 . 基于 LSTM-Arima 的大坝变形组合预测模型及其应用[J]. 长江科学院院报,
2020,37(10):64-68,75 .
[ 30] 陈闽韬 . 浅析大数据特征[J]. 电脑知识与技术,2017,13(36):237-239 .
[ 31] GÉRON A . Hands-on machine learning with Scikit-Learn and TensorFlow:Concepts,tools,and techniques to
build intelligent systems[M]. Cambridge,Massachusetts:O’Reilly Media,Inc .,2017 .
[ 32] MA X L,TAO Z M,WANG Y S,et al . Long short-term memory neural network for traffic speed prediction using
remote microwave sensor data[J]. Transportation Research Part C:Emerging Technologies,2015,54:187-197 .
[ 33] 许宁,徐昌荣 . 改进型 LSTM 变形预测模型研究[J]. 江西理工大学学报,2018,39(5):48-54 .
[ 34] 徐兰玉,刘仲秋,张维科,等 . 大坝安全监测系统数据预处理方法研究[C]/中国水力发电工程学会大坝安
/
— 79 —