Page 130 - 2023年第54卷第4期
P. 130

selectionwithPCA - RF[J].JournalofCivilStructuralHealthMonitoring,2022,12(3):557 - 578.
                [24] 韩腾飞,李亚平.基于 Stacking集成学习的剩余使用寿命预测[J?OL].计算机集成制造系统:1 - 18[2022 -
                       12 - 04].http:??kns.cnki.net?kcms?detail?11.5946.TP.20220314.1224.016.html.
                [25] 王惠文,孟洁.多元线性回归的预测建模方法[J].北京航空航天大学学报,2007(4):500 - 504.
                [26] 方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32 - 38.
                [27] 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2 - 10.
                [28] 刘波,张斌,喻佳,等.基于多元线性回归模型的大坝变形预报研究[J].人民长江,2010,41(20):53 - 55.
                [29] 罗浩,郭盛勇,包为民.拱坝变形监测预报的随机森林模型及应用[J].南水北调与水利科技,2016,14
                       (6):116 - 121.
                [30] 张志威,戴妙林,刘晓青,等.基于 GA - SVM 的 碾 压 混 凝 土 重 力 坝 参 数 反 演 [J].人 民 黄 河,2020,42
                       (6):112 - 116.
                [31] JONESB,JOHNSONRT.DesignandanalysisfortheGaussianprocessmodel[J].QualityandReliabilityEngi
                       neeringInternational ,2009,25(5):515 - 524.
                [32] 刘紫亮,居翔,张 永 芳,等.基 于 改 进 随 机 搜 索 算 法 的 随 机 森 林 调 参 优 化 [J].网 络 安 全 技 术 与 应 用,
                      2022(4):49 - 51.
                [33] 李峰,舒斐,李明轩,等.基于深度学习的 Linux远控木马检测[J].计算机工程,2020,46(7):159 - 164.
                [34] 贾俊平,何晓群,金勇进.统计学[M].7版.北京:中国人民大学出版社,2018.




                        Combinedpredictionmodelofdam deformationbasedonmulti - factorfusion
                                              andStackingensemblelearning

                                                                               1
                                                 1,2,3
                                                                                                 1
                                                               1
                                   1
                        WANGRuijie,BAOTengfei ,LIYangtao,SONGBaogang,XIANGZhenyang
                          (1.CollegeofWaterConservancyandHydropowerEngineering,HohaiUniversity,Nanjing 210098,China;
                    2.StateKeyLaboratoryofHydrology - WaterResourcesandHydraulicEngineering,HohaiUniversity,Nanjing 210098,China;
                        3.CollegeofHydraulic&EnvironmentalEngineering,ChinaThreeGorgesUniversity,Yichang 443002,China)
                  Abstract:Deformationistheintuitivereflectionofthechangeofdams’operatingbehavior.It’scrucialtobuilda
                  deformationpredictionmodelwithhigherefficiencyandaccuracyfordam structuralsafetymonitoring.Traditional
                  single - factorandsingle - algorithmpredictionmodelsinevitablyhaveseriesofproblemssuchasinsufficientgenerali
                  zationabilityandpoorrobustness ,whichwillinducedeviationsandevenmisjudgments.Tosolvethisproblem,
                  thispaperselectsdifferentdeformationinterpretationfactorsandregressionalgorithmstobuildmultiplesingle - factor
                  single - algorithmpredictionmodels.Next ,thesemodelsareintegratedtoproposeacombineddamdeformationpre
                  dictionmodelthroughStackingensemblelearning.Detailedly ,thiscombinedmodeladoptsGaussianProcessRe
                  gressionasthemeta - learnerandintegratesthesingle - factorsingle - algorithm modelsfrom algorithm andfactor
                  thesetwoaspects.Toreducetheriskofoverfitting ,k - foldcross - validationisalsointroducedingeneratingthenew
                  dataset.Referringtothedeformationdataofaconcretearchdam ,themodel’saccuracyandeffectivenesshave
                  beenevaluatedbymulti - modelconstructionandperformancecomparison.Theresultsshowthatthesingle - factor
                  single - algorithmmodelsarecharacterizedbyaccuracyanddiversity.Throughtheintegrationofalgorithmsandfac
                  tors ,thepredictionaccuracyandrobustnesshavebeensignificantlyimproved,andthepredictioncapabilityofthe
                  modelshasbeeneffectivelyenhancedduringthewater - fluctuatingperiod.Aboveall,thecombineddamdeforma
                  tionpredictionmodelhasexcellentnonlinearinformationminingabilityandpredictiveperformance ,andcouldpro
                  videareliablebasisfordamsafetymonitoring.
                  Keywords:multi - factorfusion;damsafetymonitoring;predictionmodel;Stackingensemblelearning;Support
                  VectorMachine ;RandomForest

                                                                                    (责任编辑:韩 昆)






                —  5 0  —
                     6
   125   126   127   128   129   130   131   132