Page 125 - 2025年第56卷第11期
P. 125

ences,2023,27(12):2357-2373.
               [ 11] FENG D, BECK H, DE BRUIJN J, et al.  Deep dive into global hydrologic simulations: Harnessing the power of
                      deep  learning  and  physics-informed  differentiable  models (δHBV-globe1.   0-hydroDL)[J]   Geoscientific  Model
                                                                                           .
                      Development Discussions,2023,2023:1-23.
               [ 12] LI B,SUN T,TIAN F Q,et al.  Enhancing process-based hydrological models with embedded neural networks:A
                                     .
                      hybrid approach[J]  Journal of Hydrology,2023,625:130107.
               [ 13] WANG C,JIANG S,ZHENG Y,et al.  Distributed hydrological modeling with physics-encoded deep learning:
                      A  general  framework  and  its  application  in  the  amazon[J]   Water  Resources  Research, 2024, 60(4):
                                                                      .
                      e2023WR036170.
               [ 14] ZHONG L, LEI H, YANG J.  Development of a distributed physics-informed deep learning hydrological model for
                      data-scarce regions[J]  Water Resources Research,2024,60(6):e2023WR036333.
                                       .
               [ 15] ZHONG  L, LEI  H, LI  Z, et  al.   Advancing  streamflow  prediction  in  data-scarce  regions  through  vegetation-
                      constrained distributed hybrid ecohydrological models[J]  Journal of Hydrology,2024,645:132165.
                                                               .
               [ 16] LI B, SUN T, TIAN F, et al.  Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
                      [J]  Hydrology and Earth System Sciences,2024,28(20):4521-4538.
                         .
               [ 17] SONG Y, BINDAS T, SHEN C, et al.  High-resolution national-scale water modeling is enhanced by multiscale
                      differentiable physics-informed machine learning[J]  Water Resources Research,2024,61:e2024WR038928.
                                                            .
               [ 18] BINDAS T, TSAI W-P, LIU J, et al.  Improving river routing using a differentiable muskingum-cunge model and
                      physics-informed machine learning[J]  Water Resources Research,2024,60(1):e2023WR035337.
                                                  .
               [ 19] FENTON J.  Convolution, deconvolution, the unit hydrograph and flood routing [J]  Journal of Hydrology, 2024,
                                                                                    .
                      634:131034.
               [ 20] 江善虎,任立良,雍斌,等 .  TRMM 卫星降水数据在洣水流域径流模拟中的应用[J]  水科学进展,2014,25
                                                                                        .
                      (5):641-649.
                                                       .
               [ 21] 陆旻皎 .  新安江模型研究的回顾和展望[J]  水利学报,2021,52(4):432-441.
               [ 22] JIANG S,SWEET L-B,BLOUGOURAS G,et al.  How interpretable machine learning can benefit process under‐
                                            .
                      standing in the geosciences[J]  Earth′s Future,2024,12(7):e2024EF004540.
               [ 23] XU Y, LIN K, HU C, et al.  Interpretable machine learning on large samples for supporting runoff estimation in
                                     .
                      ungauged basins[J]  Journal of Hydrology,2024,639:131598.
                                                                                                          .
               [ 24] NASH J,SUTCLIFFE J V.  River flow forecasting through conceptual models part I — A discussion of principles[J]
                      Journal of Hydrology,1970,10(3):282-290.
               [ 25] GUPTA H,KLING H,YILMAZ K,et al.  Decomposition of the mean squared error and NSE performance criteria:
                      Implications for improving hydrological modelling[J]  Journal of Hydrology,2009,377(1/2):80-91.
                                                            .
                                                                                                  .
               [ 26] SHANGGUAN  W, DAI  Y, DUAN  Q, et  al.   A  global  soil  data  set  for  earth  system  modeling[J]   Journal  of
                      Advances in Modeling Earth Systems,2014,6(1):249-263.

               [ 27] LIANG S,ZHAO X,LIU S,et al.  A long-term Global Land Surface Satellite (GLASS)data-set for environmental
                      studies[J]  International Journal of Digital Earth,2013,6(S1):5-33.
                              .
               [ 28] 杜若愚,姚成,刘玉环,等 .  基于蓄满超渗时空动态组合的网格新安江模型[J]  河海大学学报(自然科学
                                                                                      .
                      版),2022,50(6):25-32,122.
                                                                        .
               [ 29] 陈泽鑫,赵铜铁钢 .  基于可微参数学习的积融雪新安江模型[J]  水科学进展,2025,36(2):204-216.
               [ 30] THORARINSDOTTIR T,HELLTON K,STEINBAKK G,et al.  Bayesian regional flood frequency analysis for large
                      catchments[J]  Water Resources Research,2018,54(9):6929-6947.
                                 .
               [ 31] REGGIANI P,RENNER M,WEERTS A,et al.  Uncertainty assessment via Bayesian revision of ensemble stream‐
                      flow predictions in the operational river Rhine forecasting system[J]  Water Resources Research, 2009, 45(2):
                                                                         .
                      W02428.





                                                                                           (下转第 1528 页)

                — 1516   —
   120   121   122   123   124   125   126   127   128   129   130