Page 37 - 2022年第53卷第4期
P. 37

参   考   文   献:


                [ 1 ] 顾冲时,苏怀智,刘何稚 . 大坝服役风险分析与管理研究述评[J]. 水利学报,2018,49(1):26-35 .
                [ 2 ] 吴中如 . 水工建筑物安全监控理论及其应用[M]. 北京:高等教育出版社,2003 .
                [ 3 ] 钟登华,时梦楠,崔博,等 . 大坝智能建设研究进展[J]. 水利学报,2019,50(1):38-52,61 .
                [ 4 ] 蒋云钟,冶运涛,赵红莉,等 . 水利大数据研究现状与展望[J]. 水力发电学报,2020,39(10):1-32 .
                [ 5 ] CHEN X D,GU C S,CHEN H N . Early warning of dam seepage with cooperation between principal component
                       analysis and least squares wavelet support vector machine[J]. Fresenius Environmental Bulletin,2013,22(2):
                       500-507 .
                [ 6 ] QIU J C,ZHENG D J,ZHU K . Seepage monitoring models study of earth-rock dams influenced by rainstorms
                      [J]. Mathematical Problems in Engineering,2016:1656738 .
                [ 7 ] ROUSHANGAR K,GAREKHANI S,ALZADEH F . Forecasting daily seepage discharge of an earth dam using
                       wavelet-mutual information-gaussian process regression approaches[J]. Geotechnical and Geological Engineer⁃
                       ing,2016,34(5):1313-1326 .
                [ 8 ] SALAEAR F,TOLEDO M A,GONZALEZ J M,et al . Early detection of anomalies in dam performance:a meth⁃
                       odology based on boosted regression trees[J]. Structural Control and Health Monitoring,2017,24(11):e2012 .
                [ 9 ] 缪长健,施斌,郑兴,等 . 基于 CM-AFSA-BP 神经网络的土石坝渗流压力预测[J]. 水电能源科学,2019,

                       37(2):82-85 .
                [ 10] ZHANG X,CHEN X D,LI J J . Improving dam seepage prediction using back-propagation neural network and ge⁃
                       netic algorithm[J]. Mathematical Problems in Engineering,2020:1404295 .
                [ 11] 黄振东 . 遗传算法在土石坝渗流监控模型应用研究[D]. 南昌:南昌工程学院,2020 .
                [ 12] CHEN S Y,GU C S,LIN C N,et al . Prediction,monitoring,and interpretation of dam leakage flow via adaptive
                       kernel extreme learning machine[J]. Measurement,2020,166:108161 .
                [ 13] 冯春燕,庞琼,谷艳昌,等 . 基于卡尔曼滤波的土石坝渗流安全监控模型[J]. 武汉大学学报(工学版),
                       2019,52(11):962-967 .
                [ 14] LI J J,CHEN X D,GU C S,et al . Seepage comprehensive evaluation of concrete dam based on grey cluster anal⁃
                       ysis[J]. Water,2019,11(7):1499 .
                [ 15] 任秋兵,沈扬,李明超,等 . 水工建筑物安全监控深度分析模型及其优化研究[J]. 水利学报,2021,52
                      (1):71-80 .
                [ 16] LIU W J,PAN J W,REN Y S,et al . Coupling prediction model for long-term displacements of arch dams based
                       on long short-term memory network[J]. Structural Control and Health Monitoring,2020,27(7):e2548 .
                [ 17] 郭玉雪,许月萍,陈浩,等 . 基于多种递归神经网络的海岛水库径流预报[J]. 水力发电学报,2021,40
                      (9):14-26 .
                [ 18] HOCHREITER S,BENGIO Y,FRASCONI P,et al . Gradient flow in recurrent nets:the difficulty of learning
                       long-term dependencies[M]. Wiley-IEEE Press,2001 .
                [ 19] 吴忠强,于丹琦,康晓华 . 基于改进蚁狮优化算法的太阳电池模型参数辨识[J]. 太阳能学报,2019,40
                      (12):3435-3443 .
                [ 20] ALI E S,ABDELAZIM S Y,ABDELAZIZ A Y . Optimal allocation and sizing of renewable distributed generation
                       using ant lion optimization algorithm[J]. Electrical Engineering,2018,100(1):99-109 .
                [ 21] WANG Q L,ZHANG K X,ORORBIA A G,et al . An empirical evaluation of rule extraction from recurrent neu⁃
                       ral networks[J]. Neural Computation,2018,30(9):2568-2591 .
                [ 22] GONZALEZ J,YU W . Non-linear system modeling using LSTM neural networks[J] . IFAC PapersOnLine,
                       2018,51(13):485-489 .
                [ 23] SHI S Y,SUN F K,LEE H Y . Temporal pattern attention for multivariate time series forecasting[J]. Machine
                       Learning,2019,108(8/9):1421-1441 .
                [ 24] 杨 杰 ,胡 德 秀 ,吴 中 如 . 大 坝 安 全 监 控 模 型 因 子 相 关 性 及 不 确 定 性 研 究[J]. 水 利 学 报 ,2004(12):
                       99-105 .

                                                                                                — 411  —
   32   33   34   35   36   37   38   39   40   41   42