Page 74 - 2023年第54卷第2期
P. 74

Comprehensivecomparativestudyontheconstructionmethodoffloodvulnerability
                               andfragilitycurvesundertheframeworkofregressionanalysis
                                                    1,2
                                                                  1
                                                                                3
                                        JIANGXinyu ,MAXueying,YANGLijiao
                  (1.SchoolofManagement,WuhanUniversityofTechnology,Wuhan 430070,China;2.ResearchInstituteofDigitalGovernance
                             andManagementDecisionInnovation,WuhanUniversityofTechnology,Wuhan 430070,China;
                                 3.SchoolofManagement,HarbinInstituteofTechnology,Harbin 150001,China)
                  Abstract:Vulnerability?fragilitycurverevealstherelationshipbetweenhazardlevelandlossdegree,andlinksnatu
                  ralandsocialattributesofdisasters.Itisanimportantbasisfordisastereconomicimpactassessmentandriskmanage
                  ment.Currentstudieshaveproposedavarietyoffloodvulnerability?fragilitycurves,butmostofthemareempirical
                  studiesbasedoncases,lackingsystematicsummary.Therefore,inthispaper,underthetheoreticalframeworkof
                  regressionanalysis ,thevulnerabilityandfragilitycurvemodelsareverifiedconsistently.Thedifferenceandrelation
                  shipbetweenthevulnerabilitycurvesandthefragilitycurvesareclarified.Thebasicassumptions ,advantagesand
                  disadvantages ,applicability,fittingmethodsandselectioncriteriaof10differentconstructionformsofthevulnera
                  bility?fragilitycurvesarediscussed.Meanwhile ,usingthe“7.17”floodsurveydatainEnshiCity,HubeiProvince,
                  thevulnerabilityandfragilitycurvemodelsofbusinessstagnationlossareconstructedtodemonstratethetheoretical
                  summarization.Thestudyshowsthatvulnerabilitycurveaccountingforlossratecanbettersupportthelossassessment
                  andassetestimation.Itcanbeselectedifaccuratelossratedataavailable.LinearmodelandLog - logmodelarepre
                  ferredvulnerabilitycurvemodelsduetobetterparameterinterpretability.Fragilitycurveaccountingforlossstateis
                  easiertocorrespondtoriskclassificationandcountermeasuremaking.Itisrecommendedwhenlossratedataarewith
                  largeuncertainty.TheLognormalmodelispreferredfragilitycurvemodelduetobettertheoreticalapplicability.
                  Keywords:vulnerability?fragilitycurve;lossrate;lossstate;regressionanalysis;comprehensivecomparison

                                                                                    (责任编辑:李福田)


              (上接第 183页)
                      Monthlyrunoffpredictionbasedonself - adaptivevariationalmodedecomposition
                                          andlongshort - term memorynetwork
                                                                                             1
                                                                1
                                                      1
                                                                                1
                                    1,2
                           XIONGYi ,ZHOUJianzhong,SUNNa,ZHANGJianyun,ZHUSipeng
                     (1.SchoolofCivilandHydraulicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan 430074,China;
                  2.SchoolofHydraulicandEnvironmentalEngineering,ChangshaUniversityofScience&Technology,Changsha 410114,China)
                  Abstract:Accurateandreliablemonthlyrunoffpredictionisanimportantbasisforrationalallocationofwaterre
                  sources.Theoriginalrunofftimeseriescontainsavarietyoffrequencycomponents, and ahybrid model
                  combiningtimeseriesdatadecompositiontechnologyandmachinelearningmodelhasbeenusedtocapturethe
                  runoffdynamicprocess.However ,itisanimpracticalmethodtoapplythedatadecompositiontechnologydirectly
                  tothewholetimeseries ,whichwillcausesomeinformationtobetransferredfrom thetestperiodtothetraining
                  processofthemodel.Therefore,aself - adaptivedynamicdecompositionstrategyisadoptedtoupdatethehistori
                  calsampleswiththeobserveddata ,andadecomposition - prediction -integrationhybridmodelformonthlyrunoff
                  predictionbasedonvariationalmodedecompositionandlongshort - term memorynetworkisproposed.First,a
                  self - adaptivedynamicdecompositionstrategyisadoptedtodecomposethevariationalmodesofrunofftimeseries
                  data.Second ,longshort - termmemoryneuralnetworkmodelsbasedonBayesianoptimizationareconstructedto
                  identifytheinput - outputrelationshiphiddenineachmodeorsubcomponent.Then ,thefinalpredictionresultof
                  runoffisobtained byintegratingtheprediction resultsofsubmodules.Finally , takingthemonthlyrunoff
                  predictionoftheShiguhydrologicalstationintheupperreachesoftheJinshaRiverasanexample ,theeffective
                  nessandfeasibilityoftheproposedhybridmodelareverifiedbycomparingwiththetraditionaldecompositionstrat
                  egy(“bundleddecomposition”)anddecompositionmethods(discretewavelettransformandensembleempirical
                  modedecomposition ).Theresultsshowthattheproposedmodelavoidstheuseoffutureinformationinthepro
                  cessingofdatadecomposition ,andcanfurtherimprovetheaccuracyofrunoffprediction.
                  Keywords:variationalmodedecomposition;Bayesianoptimization;longshort - term memory;monthlyrunoff
                  prediction;JinshaRiver
                                                                                    (责任编辑:于福亮)

                —  1 9  —
                     8
   69   70   71   72   73   74   75   76   77   78   79