Page 74 - 2023年第54卷第2期
P. 74
Comprehensivecomparativestudyontheconstructionmethodoffloodvulnerability
andfragilitycurvesundertheframeworkofregressionanalysis
1,2
1
3
JIANGXinyu ,MAXueying,YANGLijiao
(1.SchoolofManagement,WuhanUniversityofTechnology,Wuhan 430070,China;2.ResearchInstituteofDigitalGovernance
andManagementDecisionInnovation,WuhanUniversityofTechnology,Wuhan 430070,China;
3.SchoolofManagement,HarbinInstituteofTechnology,Harbin 150001,China)
Abstract:Vulnerability?fragilitycurverevealstherelationshipbetweenhazardlevelandlossdegree,andlinksnatu
ralandsocialattributesofdisasters.Itisanimportantbasisfordisastereconomicimpactassessmentandriskmanage
ment.Currentstudieshaveproposedavarietyoffloodvulnerability?fragilitycurves,butmostofthemareempirical
studiesbasedoncases,lackingsystematicsummary.Therefore,inthispaper,underthetheoreticalframeworkof
regressionanalysis ,thevulnerabilityandfragilitycurvemodelsareverifiedconsistently.Thedifferenceandrelation
shipbetweenthevulnerabilitycurvesandthefragilitycurvesareclarified.Thebasicassumptions ,advantagesand
disadvantages ,applicability,fittingmethodsandselectioncriteriaof10differentconstructionformsofthevulnera
bility?fragilitycurvesarediscussed.Meanwhile ,usingthe“7.17”floodsurveydatainEnshiCity,HubeiProvince,
thevulnerabilityandfragilitycurvemodelsofbusinessstagnationlossareconstructedtodemonstratethetheoretical
summarization.Thestudyshowsthatvulnerabilitycurveaccountingforlossratecanbettersupportthelossassessment
andassetestimation.Itcanbeselectedifaccuratelossratedataavailable.LinearmodelandLog - logmodelarepre
ferredvulnerabilitycurvemodelsduetobetterparameterinterpretability.Fragilitycurveaccountingforlossstateis
easiertocorrespondtoriskclassificationandcountermeasuremaking.Itisrecommendedwhenlossratedataarewith
largeuncertainty.TheLognormalmodelispreferredfragilitycurvemodelduetobettertheoreticalapplicability.
Keywords:vulnerability?fragilitycurve;lossrate;lossstate;regressionanalysis;comprehensivecomparison
(责任编辑:李福田)
(上接第 183页)
Monthlyrunoffpredictionbasedonself - adaptivevariationalmodedecomposition
andlongshort - term memorynetwork
1
1
1
1
1,2
XIONGYi ,ZHOUJianzhong,SUNNa,ZHANGJianyun,ZHUSipeng
(1.SchoolofCivilandHydraulicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan 430074,China;
2.SchoolofHydraulicandEnvironmentalEngineering,ChangshaUniversityofScience&Technology,Changsha 410114,China)
Abstract:Accurateandreliablemonthlyrunoffpredictionisanimportantbasisforrationalallocationofwaterre
sources.Theoriginalrunofftimeseriescontainsavarietyoffrequencycomponents, and ahybrid model
combiningtimeseriesdatadecompositiontechnologyandmachinelearningmodelhasbeenusedtocapturethe
runoffdynamicprocess.However ,itisanimpracticalmethodtoapplythedatadecompositiontechnologydirectly
tothewholetimeseries ,whichwillcausesomeinformationtobetransferredfrom thetestperiodtothetraining
processofthemodel.Therefore,aself - adaptivedynamicdecompositionstrategyisadoptedtoupdatethehistori
calsampleswiththeobserveddata ,andadecomposition - prediction -integrationhybridmodelformonthlyrunoff
predictionbasedonvariationalmodedecompositionandlongshort - term memorynetworkisproposed.First,a
self - adaptivedynamicdecompositionstrategyisadoptedtodecomposethevariationalmodesofrunofftimeseries
data.Second ,longshort - termmemoryneuralnetworkmodelsbasedonBayesianoptimizationareconstructedto
identifytheinput - outputrelationshiphiddenineachmodeorsubcomponent.Then ,thefinalpredictionresultof
runoffisobtained byintegratingtheprediction resultsofsubmodules.Finally , takingthemonthlyrunoff
predictionoftheShiguhydrologicalstationintheupperreachesoftheJinshaRiverasanexample ,theeffective
nessandfeasibilityoftheproposedhybridmodelareverifiedbycomparingwiththetraditionaldecompositionstrat
egy(“bundleddecomposition”)anddecompositionmethods(discretewavelettransformandensembleempirical
modedecomposition ).Theresultsshowthattheproposedmodelavoidstheuseoffutureinformationinthepro
cessingofdatadecomposition ,andcanfurtherimprovetheaccuracyofrunoffprediction.
Keywords:variationalmodedecomposition;Bayesianoptimization;longshort - term memory;monthlyrunoff
prediction;JinshaRiver
(责任编辑:于福亮)
— 1 9 —
8