Page 96 - 2024年第55卷第1期
P. 96
[20] 邓志鸿,唐世渭,张铭,等.Ontology研究综述[J].北京大学学报(自然科学版),2002(5):730 - 738.
[21] 张文秀,朱庆华.领域本体的构建方法研究[J].图书与情报,2011(1):16 - 19,40.
[22] 许力,李建华.基于 BERT和 BiLSTM- CRF的生物医学命名实体识别[J].计算机工程与科学,2021,43
(10):1873 - 1879.
[23] 张乐,李健,唐亮,等.基于预训练 BERT的军事领域目标实体深度学习识别方法[J].信息工程大学学
报,2021,22(3):331 - 337.
[24] 李正民,云红艳,王翊臻.基于 BERT的多特征融 合 的 医 疗 命 名 实 体 识 别 [J].青 岛 大 学 学 报 (自 然 科 学
版),2021,34(4):23 - 29.
[25] 董哲,邵若琦,陈玉梁,等.基于 BERT和对抗训练的食品领域命名实体识别[J].计算机科学,2021,48
(5):247 - 253.
[26] 骆正清,杨善林.层次分析法中几种标度的比较[J].系统工程理论与实践,2004(9):51 - 60.
[27] 刘巍,陈霄,陈静,等.知识图谱技术研究[J].指挥控制与仿真,2021,43(6):6 - 13.
[28] 庄严,李国良,冯建华.知识库实体对齐技术综述[J].计算机研究与发展,2016,53(1):165 - 192.
[29] 赵慧子,周逸凡,段浩,等.水文模型知识学习的命名实体识别方法研究[J].中国水利水电科学研究院
学报(中英文),2023,21(6):574 - 585.
Hydrologicalmodelingknowledgegraphconstructionandapplication
1,2
1,2
1,2
1
1,2
1,2
ZHOUYifan ,DUANHao ,ZHAOHongli ,ZHAOHuizi ,LIHao ,HANKun
(1.ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing 100038,China;
2.KeyLaboratoryofRiverBasinDigitalTwinningofMinistryofWaterResources,Beijing 100038,China)
Abstract:Aimingatthelackofscenariocasesofknowledgeorganizationandstructuredexpressioninthewater
conservancyverticaldomain ,andthedifficultyofgenericknowledgeextractionmodelsinthewaterconservancy
verticaldomaintoachievetheexpectedaccuracyandotherissues,thispapertakesthehydrologicalmodelscheme
recommendationasan example , proposesthe construction framework and processofknowledge mapping,
constructsaknowledgemodelcontainingmodelinheritanceanddevelopmentrelationship,applicationwatersheds,
andmodelaccuracy,etc.,andformsamulti - strategyknowledgeextractionmethodbasedontheperiodicallitera
tureclassofunstructureddatasources,aswellasrulesandmethodsforentityalignmentandknowledgefusion.
Theknowledge modelcontainsmodelinheritance and developmentrelationship, application basin, model
accuracy ,etc.A multi - strategyknowledgeextractionmethodbasedonunstructureddatasourceofjournal
literatureisformed ,aswellastherulesandmethodsofentityalignmentandknowledgefusion.Knowledgeextrac
tionandfusionofjournalliteratureinthefieldofhydrologicalmodelingarecarriedouttoconstructahydrological
modelknowledgegraphinstance ,whichcontainsatotalof14,298nodeentities,39,133attributeentities,and
36 ,254relationships,andtheaccuracy,recall,andF1valueoftheentityrecognitionareallabove90%.The
visualexpressionandknowledgeapplicationoftheestablishedgraphinstancewerecarriedout ,andtheresultsshow
that :thegraphrealizesrapidacquisitionandlearning,organizationandmanagementofhydrologicalmodelknowl
edgebasedonjournalliterature,supportsmodelretrievalandrecommendation,improvesthediscoveryanduseof
hydrologicalmodelknowledge ,andhasreferencevaluefortheconstructionofhydrologicalknowledgegraphinsimilar
scenarios.
Keywords:knowledgegraph;hydrologicalmodel;knowledgeextraction;knowledgeapplication
(责任编辑:李 娜)
— 9 1 —