Page 130 - 2024年第55卷第8期
P. 130

[19] 颜建国,郑书闽,郭鹏程.高热流条件过冷沸腾传热系数试验研究及神经网络预测[J].工程热物理学报,
                      2022,43(6):1650 - 1659.
                [20] 王新,闫文源.基于变分模态分解和 SVM 的滚动轴承故障诊断 [J].振动与冲击,2017,36(18):252 -
                       256.
                [21] LIJ,CHENY,QIANZ,etal.ResearchonVMDbasedadaptivedenoisingmethodappliedtowatersupplypipe
                       lineleakagelocation[J].Measurement,2020,151:107153.
                [22] DRAGOMIRETSKIYK,ZOSSOD.Variationalmodedecomposition[J].IEEETransactionsonSignalProcessing,
                      2014,62(3):531 - 544.
                [23] KIM H,PARKM,KIM CW,etal.Sourcelocalizationforhazardousmaterialreleaseinanoutdoorchemical
                       plantviaacombinationofLSTM- RNNandCFDsimulation [J].Computers&ChemicalEngineering,2019,125:
                      476 - 489.
                [24] HANL,DENGY,CHENH,etal.ArobustVRFfaultdiagnosismethodbasedonensembleBiLSTM withatten
                       tionmechanism :Consideringuncertaintiesandgeneralization[J].EnergyandBuildings,2022,269:112243.
                [25] ZHANGD,SUNW,DAIY,etal.A hierarchicalearlykickdetectionmethodusingacascadedGRU network
                       [J].GeoenergyScienceandEngineering,2023,222:211390.
                [26] 宁方立,韩鹏程,段爽,等.基 于 改 进 CNN的 阀 门 泄 漏 超 声 信 号 识 别 方 法 [J].北 京 邮 电 大 学 学 报,
                      2020,43(3):38 - 44.
                [27] SPANDONIDISC,THEODOROPOULOSP,GIANNOPOULOSF,etal.Evaluationofdeeplearningapproaches
                       foroil& gaspipelineleakdetectionusingwirelesssensornetworks [J].EngineeringApplicationsofArtificialIntel
                       ligence ,2022,113:104890.



                            Small - scalepipelineleakdetectionbasedonVMDanddeeplearning

                                                                                      3
                                                                            3
                                  1
                                                1,2
                                                                                                    1
                                                                 1,2
                    ZHENGShumin,YANJianguo ,GUOPengcheng ,XUYan,LIJiang,LIUZhenxing
                      (1.SchoolofWaterResourceandHydroelectricEngineering,Xi’anUniversityofTechnology,Xi’an 710048,China;
                    2.StateKeyLaboratoryofEco - hydraulicsinNorthwestAridRegion,Xi’anUniversityofTechnology,Xi’an 710048,China;
                   3.XinjiangColdandAridRegionsWaterResourcesandEcologicalWaterEngineeringResearchCenter(AcademicianWorkstation),
                                                    Urumqi 830000,China)
                  Abstract:Toaddressthechallengeofdetectingleakagesignalsundernormalpressureandsmall - scaleleaks,this
                  paperfocusesonthedetectionofwatersupplypipelineleaks.Theexperimentaldataofleakageundertheconditions
                                               3
                  of100 - 220kPapressureand40 - 80m ?hvolumeflowwereobtained,andthevariationsinpressuresignalsunder
                  small - scaleleakconditionswereanalyzed.TheexperimentaldataisdenoisedbyusingVariationalModeDecompo
                  sition (VMD)toreducenoiseinterferenceandenhanceleaksignalcharacteristics,followedbystandardization
                  process.Thestudycombinestypicalrecurrentneuralnetworks ,includingLongShort - TermMemory(LSTM),Bi
                  directionalLongShort - Term Memory (BiLSTM),andGatedRecurrentUnit(GRU),withConvolutionalNeural
                  Network(CNN)toconstructthreedeeplearningleakagedetectionmodelsCNN - LSTM,CNN - BiLSTM,andCNN -
                  GRU.Thesemodelswereevaluated fortheirpredictiveperformance , amongthem, theCNN-GRU model
                  exhibitedthehighestpredictiveaccuracyof99.56% forallexperimentaldata.Theresultsindicatethatthemodels
                  demonstratehighaccuracyindetectingleaksundernormalpressureandsmall - scaleleakconditions.CNNprovesto
                  beinstrumentalinextractingpertinentfeaturesefficientlyandaccurately ,therebyimprovingthepredictionaccuracy
                  oftheleakagedetectionmodel.Theresearchprovidesvaluablesupportfortheintelligentmanagementofpipeline
                  leakagedetectionsystem.
                  Keywords:leakdetection;small - scaleleakage;variationalmodedecomposition;deeplearning;watersupplypipe
                  line


                                                                            (责任编辑:李福田 鲁 婧)




                —  1 0 8 —
                     0
   125   126   127   128   129   130   131   132