Page 117 - 2024年第55卷第9期
P. 117
[38] YINH,GONGY,QIUG.Sidewindowguidedfiltering[J].SignalProcessing,2019,165:315 - 330.
[39] LIUH,LID,DINGY.MHA - ConvLSTM damdeformationpredictionmodelconsideringenvironmentalvolumelag
effect[J].AppliedSciences,2023,13(14):8538.
[40] 马怀发,王立涛,陈厚群,等.混凝土动态损伤的滞后特性[J].水利学报,2010,41(6):659 - 664.
[41] 郑佳艳.基于序列图像的结构全域时空动态位移监测方法探索[D].重庆:重庆交通大学,2022.
[42] 于起峰,赵宏伟,刘肖林.基于图像的精密测量与运动测量[M].北京:科学出版社,2002.
Machinevision - basednon - contactmonitoringmethodforgateand
dam surfacedisplacements
1,2
1,2
1,3
CHENBo 1,2,3 ,HEMengjia ,LIUWeiqi ,MACong
(1.StateKeyLaboratoryofWaterDisasterPrevention,HohaiUniversity,Nanjing 210098,China;
2.CollegeofWaterConservancyandHydropowerEngineering,HohaiUniversity,Nanjing 210098,China;
3.InstituteofWaterEngineeringSafety,HohaiUniversity,Nanjing 210098,China)
Abstract:Aimingattheproblemsofconventionalmonitoringmethodsuchashighlabordensity,lowmonitoring
frequency ,anddifficultyinachievinglong - termstablemonitoringofthesurfacedisplacementoflocksanddams,
anon - contactintelligentmonitoringmethodintegratingspatio - temporalfeaturesisproposed.Themethodadoptsan
artificialtargetasamarker ,takesacameraasanacquisitiondevice,transmitsimageinformationwirelessly,and
makesuseofAdaptiveGammaCorrectionWeightedDistribution(AGCWD)andWeightedGuidedImageFilter
(WGIF)withimprovededge - awarenessfactor.WGIFwithedge - awarenessfactortoenhancethefeatureexpression
abilityoflowilluminationimages ,andtheSpatio - TemporalContext(STC)algorithmbasedonBayesianframework
onboardthecomputertodeeplyminethecontextualspatio - temporalinformationofthetargetimage ,andfurther
introducesurfacefittingtoobtainsub - pixelleveldisplacementinformationofthetargettoachievethesub - pixel
displacementinformationofbothhorizontalandverticalbi - directionalsurfacedisplacementsofthegateanddam.
Further ,surfacefittingisintroducedtoobtainsubpixel - leveldisplacementinformationtoachievenon - pixel - level
non - contactmonitoringofhorizontalandverticalbi - directionalsurfacedisplacementsofthelockanddam.Thela
boratoryandfieldtestresultsshowthatthedisplacementmonitoringdataunderdifferentexperimentalscenariosare
highlyconsistentwiththecalibrationdata,andtheerrorislessthan0.05mm;comparedwiththeexistingimage
optimizationprocessingmethods ,theimageoptimizationprocessingmethodsbasedonAGCWDandWGIFincrease
thePeakSignal - to - NoiseRatio (PSNR)by2.70%,increasetheinformationentropyby4.91%,andreducethe
standarddeviationby2.63%;comparedwiththeestablishedtargettrackingalgorithms,theSTCtargettrackingal
gorithmbasedonsurfacefittingismoreeffectiveinobtainingsub - pixel - leveldisplacementinformation.Compared
withtheexistingtargettrackingalgorithms,thefieldmonitoringdataoftheSTCtargettrackingalgorithmbasedon
surfacefittingimprovestheaccuracyofthesimilartargettrackingalgorithmsby48%,whichcanprovideahigh -
precisionsolutionforthemonitoringofthegateanddamsurfacedisplacements.
Keywords:lockanddam;surfacedisplacementmonitoring;spatio - temporalcharacteristicsofimagesequences;
digitalimageoptimisation;sub - pixelleveltargettracking
(责任编辑:王 婧)
— 1 1 2 —
2