Page 129 - 2024年第55卷第9期
P. 129

[32] YAOZY,WANGZC,WANGDW,etal.AnensembleCNN - LSTM andGRUadaptiveweightingmodelbased
                       improvedsparrowsearchalgorithm forpredictingrunoffusinghistoricalmeteorologicalandrunoffdataasinput [J].
                       JournalofHydrology(Amsterdam),2023,625:129977.




                          Streamflowpost - processingbasedondistributedhydrologicalfluxesand
                                         spatio - temporaldeeplearningalgorithm
                                                1
                                                                      1
                                                             1
                                                                                2
                                         WUYao,XUYueping,LIULi,HEKeqi
                               (1.InstituteofWaterScienceandEngineering,CollegeofCivilEngineeringandArchitecture,
                                             ZhejiangUniversity,Hangzhou 310058,China;
                       2.EarthandClimateSciences,NicholasSchooloftheEnvironment,DukeUniversity,Durham,NC 27708,USA)

                  Abstract:Accuratesimulationofstreamflowisacrucialprerequisiteforwaterresourcesmanagementandregional
                  integratedpolicymaking.Inordertoimprovetheaccuracyofstreamflowsimulation,thisstudytakesYonganxiRiv
                  erBasininTaizhou,ZhejiangProvinceasthestudyarea.ACNN - LSTM spatio - temporalpost - processingmodel
                  bycouplingCNNwithLSTMisproposedbasedonthemeasureddailydischargedataatBaizhi ’aoStationfrom2010
                  to2019andhydrologicalfluxessimulatedbytheGrid - HBV model.Weconstructtwopost - processingmodels,
                  namelyCNN - LSTM withsingleflux(s - CNN - LSTM)andCNN - LSTM withdoublefluxes(bi - CNN - LSTM).Their
                  performanceiscomparedandanalyzedwithabenchmarkmodel (s - LSTM).TheresultsshowthattheNSEofthe
                  Grid - HBVmodelduringthecalibrationandvalidationperiodsare0.78and0.81 ,respectively,indicatinganover
                  allgoodrunoffsimulation.However ,thereareunderestimationinmediumandhighflowandoverestimationinlow
                  flowsimulations.Afterpost - processing ,theNSEofs - LSTM inthetwostudyperiodsare0.87and0.85,withan
                  increaseof11.2% and5.8%,andtheNSEofs - CNN - LSTM are0.90and0.89,withanincreaseof14.6% and
                  10.9%.TheNSEofbi - CNN - LSTMinthetwostudyperiodsbothreach0.92 ,withanincreaseof17.2% and14.2%.
                  Comparedtothes - LSTM model,thebi - CNN - LSTM modelpresentsafurtherenhancementof6.0% and8.4% in
                  accuracy.Inaddition ,thebi - CNN - LSTM modelcanmarkedlyimprovethedefectsoforiginalsimulationinthe
                  high ,mediumandlowflows.Forfourtypicalfloodevents,thebi - CNN - LSTMmodelhasthebestpost - processing
                  effect ,whichreducesthefloodpeakerrorby36.6% onaverage,thes - LSTMmodelandthes - CNN - LSTMmodel
                  reducesthefloodpeakerrorby19.3% and30.3% onaverage.Insummary ,theCNN - LSTM modelbasedondis
                  tributedhydrologicalfluxeshasagoodabilityofstreamflowpost - processing ,whichcansignificantlyimprovethe
                  streamflowsimulationsofhydrologicalmodels.
                  Keywords:post - processing;CNN - LSTM;deeplearning;gridHBVhydrologicalmodel;JiaoRiverbasin


                                                                                    (责任编辑:耿庆斋)



























                —  1 1 4 —
                     3
   124   125   126   127   128   129   130   131