Page 128 - 2024年第55卷第9期
P. 128

ibrationandoptimization[J].JournalofHydrologyandHydromechanics,2014,62(1):82 - 88.
                [ 7] 巴欢欢,郭生练,钟逸轩,等.考虑降水预报的 三 峡 入 库 洪 水 集 合 概 率 预 报 方 法 比 较 [J].水 科 学 进 展,
                      2019,30(2):186 - 197.
                [ 8] MORAWIETZM,XUCY,GOTTSCHALKL,etal.Systematicevaluationofautoregressiveerrormodelsaspost -
                       processorsforaprobabilisticstreamflowforecastsystem[J].JournalofHydrology(Amsterdam),2011,407:58 - 72.
                [ 9] 李向阳,程春田,林剑艺.基于 BP神经网络的贝叶斯概率水文预报模型 [J].水利学报,2006,37(3):
                      354 - 359.
                [10] LEEDG,AHNKH.Astackingensemblemodelforhydrologicalpost - processingtoimprovestreamflowforecasts
                       atmedium - rangetimescalesoverSouthKorea [J].JournalofHydrology,2021,600:126681.
                [11] 周庆梓,何自立,吴磊,等.多源数据融合的深度学习径流 预 测 模 型 [J].水 力 发 电 学 报,2023,42(5):
                      43 - 52.
                [12] BOGNERK,LIECHTIK,ZAPPAM.Post - processingofstream flowsinswitzerlandwithanwmphasisonlow
                       flowsandfloods[J].Water,2016,8(4):115.
                [13] SHARMAS,GHIMIREG R,SIDDIQUER.Machinelearningforpostprocessingensemblestreamflowforecasts
                       [J].JournalofHydroinformatics,2023,25(1):126 - 139.
                [14] 刘松楠.基于 WRF - Hydro的季节水文动力预测研究[D].南京:南京信息工程大学,2023.
                [15] HANH,MORRISONR R.Improvedrunoffforecastingperformancethrougherrorpredictionsusingadeep -
                       learningapproach [J].JournalofHydrology,2022,608:127653.
                [16] ALIZADEH B,BAFTIAG,KAMANGIRH,etal.A novelattention - basedLSTM cellpost - processorcoupled
                       withbayesianoptimizationforstreamflowprediction[J].JournalofHydrology,2021,601:126526.
                [17] 杨海,姜月华,周权平,等.太湖流域平原水文试验区降雨产流过程特征研究[J].河海大学学报(自然科
                       学版),2021,49(6):506 - 514.
                [18] 赵思晗.华北半湿润山区西台子实验流域产流机制研究[D].北京:清华大学,2021.
                [19] NILL,WANGD,SINGH PV,etal.Streamflowandrainfallforecastingbytwolongshort - termmemory - based
                       models [J].JournalofHydrology,2020,583(PB):124296.
                [20] HANM X,YINP,CHU ZX,etal.Characteristicsandinfluencingfactorsofwaterandsedimentchangesin
                       JiaojiangRiverBasin[J].MarineGeologyFrontiers,2022,38(12):26 - 39.
                [21] 郑超昊,尹志伟,曾钢锋,等.基于时空深度学习模型的数值降水预报后处理 [J].浙江大学学报 (工学
                       版),2023,57(9):1756 - 1765.
                [22] LIUL,GUH T,XUYP,etal.Real - timefloodforecastingviaparameterregionalizationandblendingnowcasts
                       withNWPforecastsovertheJiaoRiver ,China[J].JournalofHydrometeorology,2023,24(3):561 - 582.
                [23] KOLBJRNE,BENJAMIN R,INGELIN S,etal.Evaluationofstatisticalmodelsforforecasterrorsfrom the
                       HBVmodel[J].JournalofHydrology(Amsterdam),2010,384:142 - 155.
                [24] HUANGSC,EISNERS,MAGNUSSONOJ,etal.Improvementsofthespatiallydistributedhydrologicalmodel
                       lingusingtheHBVmodelat1km resolutionforNorway[J].JournalofHydrology,2019,577:123585.
                [25] 田烨.气候变化对极端径流影响评估中的不确定性研究[D].杭州:浙江大学,2013.
                [26] 何柯琪,许月萍,高超.一种新的基于网格化流域和分类率定的水文模型:CN110598242B[P].2021 - 07 - 23.
                [27] FATEMEH G,DOOSUNK.Improvinglong - termstreamflowpredictioninapoorlygaugedbasinusinggeo - spatio
                       temporalmesoscaledataandattention - baseddeeplearning : A comparativestudy[J].JournalofHydrology,
                      2022,615(PA):128608.
                [28] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229 - 1251.
                [29] LIB,LIRD,SUNT,etal.ImprovingLSTM hydrologicalmodelingwithspatiotemporaldeeplearningandmulti -
                       tasklearning :AcasestudyofthreemountainousareasontheTibetanPlateau[J].JournalofHydrology,2023,
                      620(PA):129401.
                [30] LIPF,ZHANGJ,PETERK.PredictionofflowbasedonaCNN - LSTM combineddeeplearningapproach[J].
                       Water,2022,14(6):993.
                [31] 董磊华,熊立华,万民.基于贝叶斯模型加权平均方法的水文模型不确定性分 析 [J].水 利 学 报,2011,
                      42(9):1065 - 1074.

                                                                                                   1
                                                                                              —   1 3 3 —
   123   124   125   126   127   128   129   130   131