Page 139 - 2024年第55卷第10期
P. 139
ofDWWL,andproposesthecontrolprinciplesfortypicaldroughtyearssuchaslightdrought,moderatedrought,
etc.,whichareclassified intogradesⅠ, Ⅱ, Ⅲ, and Ⅳ, and staged DWWL.Combiningthereservoir
operationmodelwiththeAquaCrop - OSPymodel ,whichcalculatesagriculturalwaterdemandandwaterdemand
process,andaimingtominimizetheriskofagriculturalproductionlossesduetodrought,thereservoiroperation
processandagriculturalproductionriskofdroughtlossesindifferentinitialwaterlevelscenariosfortypicalyears
withdifferentlevelsofdroughtweresimulated ,andtheriskcurvesofagriculturalproductionlossduetodrought
wasdrawn.ReservoirwaterlevelcorrespondingtothedemarcationpointoflosslevelriskisusedasthegradedDW
WL.TheAquaCrop - OSPymodelisusedtosimulateagriculturalproductionineachtypicalyearundervariousirri
gationschemes ,andthepartialcorrelationcoefficientbetweenmonthlywatersupplyrateandrateofreductionin
agriculturalproductionarecalculatedtorepresentthesensitivityofwaterdemandineachmonth,whichisusedas
thebasisforwatervolumehedgingandDWWLstagingduringtimeperiods.TakingDongzhuangReservoirasanex
ample ,themaincropsinitswatersupplyarea,summermaizeandwinterwheat,wereselectedforexampleanaly
sis.TheresultsshowthatthegradedandstagedcontrolofDWWLreflectedthecriticalregulationtheoryandthe
spatiotemporalhedgingregulationofwatervolume ;thechangecurveoftheriskofagriculturalproductionlossesdue
todroughtpresentsacontinuous,multiinflectionpoint,andthree - stagechangefeature.DWWLofDongzhuang
ReservoirisclassifiedasLevel Ⅳ warninginlightdroughtyears,Level Ⅳ,Ⅲ,andⅡ warninginmoderateand
heavydroughtyears,andLevel Ⅰ andⅡ warninginextremedroughtyears.DWWLisdividedintothreeperiods
fromJulytoDecember,JanuarytoApril,andMaytoJuneintermsoftime.
Keywords:gradedandstageddroughtwarningwaterlevel;AquaCrop - OSPymodel;sensitivitytowaterdemand;
theriskofagriculturalproductionlossesduetodrought
(责任编辑:耿庆斋)
(上接第 1259页)
PositioncompensationtechnologyforintelligentmonitoringofRCCdamsin
deepnarrowvalleybasedonGNSS?UWB?RTSfusion
1
2
1
1
1
GAOHaojun,WANGXiaoling,NILei,TONGDawei,LINWeiwei,HEJinlong 2
(1.StateKeyLaboratoryofHydraulicEngineeringIntelligentConstructionandOperation,TianjinUniversity,Tianjin 300354,China;
2.HuanengLancangRiverHydropowerInc.,Kunming 650200,China)
Abstract:Inrecentyears,theintelligentmonitoringforthecompactionqualityofthedamshasbeenthehottop
icoftheresearch.Theexistingreal - timemonitoringtechnologyforrollercompactedconcrete(RCC)damsrelies
onGlobalNavigationSatelliteSystems (GNSS).However,fortherollercompactedconcretedamsbuiltindeep
narrowvalleys ,theGNSSsystemissusceptibletotheinterferenceofthesignaldeniedcausedbytheocclusionof
mountains.Inresponsetotheaboveissues ,thisstudyhasproposedanintelligentpositioningcompensationtech
nologyforthecompactionconstructionofRCCdamsbasedonthefusionofGNSS?UWB?RTS.Firstly ,amathe
maticalmodelforreal - timemonitoringofRCCdamrollingindeepnarrowvalleyareaswasestablishedbasedon
theenvironmentalcharacteristicsofthecliffsidewallsandtheobstructionoftheinvertedsuspension.Secondly ,
thepositioningcompensation technologyusingultrawideband(UWB)and robottotalstation(RTS)was
introduced.AnimprovedKalmanfilteringalgorithmcombininginnovationthresholdandleastsquareswasadopted
tofusetheGNSS?UWB?RTSdatafortoachievecontinuousandstablepositioningmonitoringinsatellitesignalde
niedenvironments.Finally ,theapplicationresultsinalarge - scaleRCCdam projectinSouthwestChinashow
thatthismethodcanachievereal - timemonitoringoftheentireterrainandprocessofRCCdam constructionin
deepnarrowvalleys.ThemethodcompensatesfortheshortcomingsofrelyingsolelyonGNSSforreal - timemoni
toringofthecompactionprocess.
Keywords:rollercompactedconcretedam;positioncompensation;intelligentmonitoringfordams;Kalmanfil
ter ;deepnarrowvalley
(责任编辑:李福田 尹 婧)
2
— 1 6 9 —