Page 24 - 2025年第56卷第9期
P. 24
.
[ 2 ] TURING A. Computing machinery and intelligence[J] Mind,1950,59(236):433-460.
[ 3 ] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J] Science, 2015,
.
349(6245):255-260.
[ 4 ] CALLAWAY E. Chemistry Nobel goes to developers of AlphaFold AI that predicts protein structures[J] Nature,
.
2024,634(8034):525-526.
[ 5 ] CALLAWAY E. The huge protein database that spawned AlphaFold and biology’ AI revolution[J] Nature,2024,
s
.
634(8036):1028-1029.
.
[ 6 ] YANN L,BENGIO Y,HINTON G. Deep learning[J] Nature,2015,521(7553):436-444.
[ 7 ] 钟登华,张天鸿,余红玲,等 . 智能时代与大坝工程建设智能化研究进展[J] 水利学报,2025,56(1):1-19.
.
.
[ 8 ] 赵铜铁钢,张弛,田雨,等 . 全球气象预报驱动流域水文预报研究进展与展望[J] 水科学进展,2024,35
(1):156-166.
[ 9 ] LAM R,SANCHEZ-GONZALEZ A,WILLSON M,et al. Learning skillful medium-range global weather forecast⁃
ing[J] Science,2023,382(6677):1416-1421.
.
[ 10] BI K, XIE L, ZHANG H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]
.
Nature,2023,619(7970):533-538.
.
[ 11] SHEN C. A transdisciplinary review of deep learning research and its relevance for water resources scientists[J]
Water Resources Research,2018,54(11):8558-8593.
[ 12] 欧阳文宇,叶磊,顾学志,等 . 深度学习水文预报研究进展综述Ⅱ——研究进展及展望[J] 南水北调与水利
.
科技(中英文),2022,20(5):862-875.
[ 13] 刘媛媛,刘业森,刘洋,等 . 基于机器学习降雨动态时空特征识别山丘区小流域洪水预报方法研究[J] 水利
.
学报,2024,55(9):1009-1019.
[ 14] 刘昱辰,刘佳,刘录三,等 . 基于 LSTM 实时校正的 WRF/WRF-Hydro 耦合径流预报[J] 水利学报,2023,
.
54(11):1334-1346.
.
[ 15] 王浩,牛存稳,赵勇 . 流域“自然-社会”二元水循环与水资源研究[J] 地理学报,2023,78(7):1599-1607.
[ 16] 芮孝芳 . 工程水文学在中国的发展[J] 水利学报,2019,50(1):145-154.
.
.
[ 17] 夏军 . 水文尺度问题[J] 水利学报,1993(5):32-37.
.
[ 18] 芮孝芳 . 水文学与“大数据”[J] 水利水电科技进展,2016,36(3):1-4.
.
[ 19] 芮孝芳 . 数据密集范式与水文学的未来[J] 水利水电科技进展,2018,38(6):1-7.
[ 20] ADDOR N, NEWMAN A J, MIZUKAMI N, et al. The CAMELS data set: catchment attributes and meteorology
for large-sample studies[J] Hydrology and Earth System Sciences,2017,21(10):5293-5313.
.
[ 21] FOWLER K J A, ACHARYA S C, ADDOR N, et al. CAMELS-AUS: hydrometeorological time series and land⁃
scape attributes for 222 catchments in Australia[J] Earth System Science Data,2021,13(8):3847-3867.
.
[ 22] HÖGE M,KAUZLARIC M,SIBER R,et al. CAMELS-CH:hydro-meteorological time series and landscape attri⁃
.
butes for 331 catchments in hydrologic Switzerland[J] Earth System Science Data,2023,15(12):5755-5784.
[ 23] HELGASON H B,NIJSSEN B. LamaH-Ice:LArge-SaMple Data for hydrology and environmental sciences for ice⁃
land[J] Earth System Science Data,2024,16(6):2741-2771
.
[ 24] ARSENAULT R, BAZILE R, OUELLET DALLAIRE C, et al. CANOPEX: A Canadian hydrometeorological
watershed database[J] Hydrological Processes,2016,30(15):2734-2736.
.
.
[ 25] 黄靖涵,王兆才,吴俊豪,等 . 基于深度学习集合优化模型的径流区间预测研究[J] 水利学报,2025,56
(2):240-252,265.
[ 26] 刘 万 , 谢 帅 , 钟 德 钰 , 等 . 基 于 深 度 学 习 与 HEC-HMS 模 型 的 小 流 域 暴 雨 洪 水 耦 合 预 报[J] 水 利 学 报 ,
.
2025,56(3):364-374.
[ 27] FANG K,KIFER D,LAWSON K,et al. The data synergy effects of time-series deep learning models in hydrology
.
[J] Water Resources Research,2022,58(4):e2021WR029583.
[ 28] KRATZERT F, KLOTZ D, SHALEV G, et al. Towards learning universal, regional, and local hydrological
behaviors via machine learning applied to large-sample datasets[J] Hydrology and Earth System Sciences, 2019,
.
23(12):5089-5110.
[ 29] KRATZERT F,KLOTZ D,HERRNEGGER M,et al. Toward improved predictions in ungauged basins:exploiting
— 1128 —

