Page 25 - 2025年第56卷第9期
P. 25
the power of machine learning[J] Water Resources Research,2019,55(12):11344-11354.
.
[ 30] NEARING G S, KRATZERT F, SAMPSON A K, et al. What role does hydrological science play in the age of
machine learning?[J] Water Resources Research,2021,57(3):e2020WR028091.
.
[ 31] NEARING G,COHEN D,DUBE V,et al. Global prediction of extreme floods in ungauged watersheds[J] Nature,
.
2024,627(8004):559-563.
[ 32] NAI C, LIU X, TANG Q, et al. A novel strategy for automatic selection of cross-basin data to improve local
.
machine learning-based runoff models[J] Water Resources Research,2024,60(5):e2023WR035051.
.
[ 33] 张楚汉,王光谦 . 水利科学与工程前沿(上)[M] 1 版 . 北京:科学出版社,2017.
.
[ 34] 谢雨祚,郭生练,钟斯睿,等 . 金沙江下游梯级水库运行期设计洪水计算方法研究[J] 水利学报,2025,56
(3):354-363.
[ 35] 王文川,田维璨,徐雷,等 . Mε-OIDE 求解约束优化问题算法及其在水库群防洪调度中的应用[J] 水利学
.
报,2023,54(2):148-158.
[ 36] CASTELLETTI A, GALELLI S, RESTELLI M, et al. Tree-based reinforcement learning for optimal water reser⁃
voir operation[J] Water Resources Research,2010,46(9):W09507.
.
[ 37] FENG S, SUN H, YAN X, et al. Dense reinforcement learning for safety validation of autonomous vehicles[J]
.
Nature,2023,615(7953):620-627.
[ 38] XU W, ZHANG X, PENG A, et al. Deep reinforcement learning for cascaded hydropower reservoirs considering
inflow forecasts[J] Water Resources Management,2020,34(9):3003-3018.
.
[ 39] 谭乔凤,宋嘉伟,闻昕,等 . 基于 DQN 算法的水电站站内负荷优化分配研究[J] 水利学报,2024,55(11):
.
1345-1355.
[ 40] 黄显峰,冉超越,周文,等 . 基于深度强化学习算法的水光互补优化调度研究[J] 水利水电技术(中英文),
.
2025,56(4):235-247.
[ 41] SIDRANE C,FITZPATRICK D J,ANNEX A,et al. Machine learning for generalizable prediction of flood suscep⁃
/
tibility[C]/NeurIPS 2019. 2019.
[ 42] KREIBICH H,Van LOON A F,SCHRÖTER K,et al. The challenge of unprecedented floods and droughts in risk
.
management[J] Nature,2022,608(7921):80-86.
[ 43] MUÑOZ-SABATER J, DUTRA E, AGUSTÍ -PANAREDA A, et al. ERA5-Land: a state-of-the-art global
.
reanalysis dataset for land applications[J] Earth System Science Data,2021,13(9):4349-4383.
[ 44] BECK H E,WOOD E F,PAN M,et al. MSWEP V2 Global 3-Hourly 0. 1° precipitation:methodology and quanti⁃
tative assessment[J] Bulletin of the American Meteorological Society,2019,100(3):473-500.
.
[ 45] DOU Y,YE L,GUPTA H V,et al. Improved flood forecasting in basins with no precipitation stations:constrained
runoff correction using multiple satellite precipitation products[J] Water Resources Research, 2021, 57(12):
.
e2021WR029682.
[ 46] DOU Y, YE L, AI J, et al. A framework for merging precipitation retrievals and gauge-based observations based
.
on a novel concept namely virtual gauges[J] Journal of Hydrology,2023,620:129506.
[ 47] HUFFMAN G J,BOLVIN D T,BRAITHWAITE D,et al. Integrated multi-satellite retrievals for the global precipi⁃
/
tation measurement (GPM)mission (IMERG)[M]/LEVIZZANI V,KIDD C,KIRSCHBAUM D B,et al. Satellite
Precipitation Measurement:Volume 1. Cham:Springer International Publishing,2020:343-353.
[ 48] USHIO T,SASASHIGE K,KUBOTA T,et al. A kalman filter approach to the global satellite mapping of precipita⁃
tion (GSMaP)from combined passive microwave and infrared radiometric data[J] Journal of the Meteorological Soci⁃
.
ety of Japan. 2009,87A:137-151.
.
[ 49] JUNQUEIRA A M, MAO F, MENDES T S G, et al. Estimation of river flow using CubeSats remote sensing[J]
Science of The Total Environment,2021,788:147762.
[ 50] 张艳军,罗兰,张过,等 . 水利小卫星星座总体构想[J] 中国防汛抗旱,2022,32(11):1-6,31.
.
[ 51] TAURO F,SELKER J,GIESEN N VAN DE,et al. Measurements and observations in the XXI century (MOXXI):
.
innovation and multi-disciplinarity to sense the hydrological cycle[J] Hydrological Sciences Journal, 2018, 63
(2):169-196.
.
[ 52] 李国英 . 推进我国防洪安全体系和能力现代化[J] 中国防汛抗旱,2024,34(9):4-5.
— 1129 —

