Page 25 - 2025年第56卷第9期
P. 25

the power of machine learning[J]  Water Resources Research,2019,55(12):11344-11354.
                                              .
               [ 30] NEARING  G  S, KRATZERT  F, SAMPSON  A  K, et  al.   What  role  does  hydrological  science  play  in  the  age  of
                      machine learning?[J]  Water Resources Research,2021,57(3):e2020WR028091.
                                      .
               [ 31] NEARING G,COHEN D,DUBE V,et al.  Global prediction of extreme floods in ungauged watersheds[J]  Nature,
                                                                                                    .
                      2024,627(8004):559-563.
               [ 32] NAI  C, LIU  X, TANG  Q, et  al.   A  novel  strategy  for  automatic  selection  of  cross-basin  data  to  improve  local
                                                    .
                      machine learning-based runoff models[J]  Water Resources Research,2024,60(5):e2023WR035051.
                                                            .
               [ 33] 张楚汉,王光谦 .  水利科学与工程前沿(上)[M]  1 版 .  北京:科学出版社,2017.
                                                                                          .
               [ 34] 谢雨祚,郭生练,钟斯睿,等 .  金沙江下游梯级水库运行期设计洪水计算方法研究[J]  水利学报,2025,56
                      (3):354-363.
               [ 35] 王文川,田维璨,徐雷,等 .  Mε-OIDE 求解约束优化问题算法及其在水库群防洪调度中的应用[J]  水利学
                                                                                                    .
                      报,2023,54(2):148-158.
               [ 36] CASTELLETTI A, GALELLI S, RESTELLI M, et al.  Tree-based reinforcement learning for optimal water reser⁃
                      voir operation[J]  Water Resources Research,2010,46(9):W09507.
                                   .
               [ 37] FENG S, SUN H, YAN X, et al.  Dense reinforcement learning for safety validation of autonomous vehicles[J]
                                                                                                          .
                      Nature,2023,615(7953):620-627.
               [ 38] XU W, ZHANG X, PENG A, et al.  Deep reinforcement learning for cascaded hydropower reservoirs considering
                      inflow forecasts[J]  Water Resources Management,2020,34(9):3003-3018.
                                    .
               [ 39] 谭乔凤,宋嘉伟,闻昕,等 .  基于 DQN 算法的水电站站内负荷优化分配研究[J]  水利学报,2024,55(11):
                                                                                     .
                      1345-1355.
               [ 40] 黄显峰,冉超越,周文,等 .  基于深度强化学习算法的水光互补优化调度研究[J]  水利水电技术(中英文),
                                                                                       .
                      2025,56(4):235-247.
               [ 41] SIDRANE C,FITZPATRICK D J,ANNEX A,et al.  Machine learning for generalizable prediction of flood suscep⁃
                              /
                      tibility[C]/NeurIPS 2019.  2019.
               [ 42] KREIBICH H,Van LOON A F,SCHRÖTER K,et al.  The challenge of unprecedented floods and droughts in risk
                                  .
                      management[J]  Nature,2022,608(7921):80-86.
               [ 43] MUÑOZ-SABATER  J, DUTRA  E, AGUSTÍ -PANAREDA  A, et  al.   ERA5-Land: a  state-of-the-art  global
                                                    .
                      reanalysis dataset for land applications[J]  Earth System Science Data,2021,13(9):4349-4383.
               [ 44] BECK H E,WOOD E F,PAN M,et al.  MSWEP V2 Global 3-Hourly 0. 1° precipitation:methodology and quanti⁃
                      tative assessment[J]  Bulletin of the American Meteorological Society,2019,100(3):473-500.
                                     .
               [ 45] DOU Y,YE L,GUPTA H V,et al.  Improved flood forecasting in basins with no precipitation stations:constrained
                      runoff  correction  using  multiple  satellite  precipitation  products[J]   Water  Resources  Research, 2021, 57(12):
                                                                       .
                      e2021WR029682.
               [ 46] DOU Y, YE L, AI J, et al.  A framework for merging precipitation retrievals and gauge-based observations based
                                                      .
                      on a novel concept namely virtual gauges[J]  Journal of Hydrology,2023,620:129506.
               [ 47] HUFFMAN G J,BOLVIN D T,BRAITHWAITE D,et al.  Integrated multi-satellite retrievals for the global precipi⁃
                                                           /

                      tation measurement (GPM)mission (IMERG)[M]/LEVIZZANI V,KIDD C,KIRSCHBAUM D B,et al. Satellite
                      Precipitation Measurement:Volume 1.  Cham:Springer International Publishing,2020:343-353.
               [ 48] USHIO T,SASASHIGE K,KUBOTA T,et al.  A kalman filter approach to the global satellite mapping of precipita⁃
                      tion (GSMaP)from combined passive microwave and infrared radiometric data[J]  Journal of the Meteorological Soci⁃
                                                                                 .

                      ety of Japan.  2009,87A:137-151.
                                                                                                          .
               [ 49] JUNQUEIRA A M, MAO F, MENDES T S G, et al.  Estimation of river flow using CubeSats remote sensing[J]
                      Science of The Total Environment,2021,788:147762.
               [ 50] 张艳军,罗兰,张过,等 .  水利小卫星星座总体构想[J]  中国防汛抗旱,2022,32(11):1-6,31.
                                                                  .
               [ 51] TAURO F,SELKER J,GIESEN N VAN DE,et al.  Measurements and observations in the XXI century (MOXXI):
                                                                          .
                      innovation  and  multi-disciplinarity  to  sense  the  hydrological  cycle[J]   Hydrological  Sciences  Journal, 2018, 63
                      (2):169-196.
                                                             .
               [ 52] 李国英 .  推进我国防洪安全体系和能力现代化[J]  中国防汛抗旱,2024,34(9):4-5.
                                                                                               — 1129  —
   20   21   22   23   24   25   26   27   28   29   30