Page 26 - 2025年第56卷第9期
P. 26
[ 53] WANG C,TANG G,GENTINE P. PrecipGAN:merging microwave and infrared data for satellite precipitation esti⁃
.
mation using generative adversarial network[J] Geophysical Research Letters,2021,48(5):e2020GL092032.
[ 54] WICKERT A D, SANDELL C T, SCHULZ B, et al. Open-source Arduino-compatible data loggers designed for
.
field research[J] Hydrology and Earth System Sciences,2019,23(4):2065-2076.
[ 55] EIDAM E F, LANGHORST T, GOLDSTEIN E B, et al. OpenOBS: Open-source, low-cost optical backscatter
sensors for water quality and sediment-transport research[J] Limnology and Oceanography: Methods, 2022, 20
.
(1):46-59.
[ 56] LANGHORST T,PAVELSKY T,EIDAM E,et al. Increased scale and accessibility of sediment transport research
.
in rivers through practical,open-source turbidity and depth sensors[J] Nature Water,2023,1(9):760-768.
[ 57] OVEREEM A, LEIJNSE H, UIJLENHOET R. Country-wide rainfall maps from cellular communication networks
.
[J] Proceedings of the National Academy of Sciences,2013,110(8):2741-2745.
[ 58] SUNKARA V,PURRI M,SAUX B L,et al. Street to cloud:improving flood maps with crowdsourcing and seman⁃
tic segmentation[C]/ NeurIPS 2020 Workshop on Tackling Climate Change with Machine Learning. 2020.
/
.
[ 59] 任芝花,熊安元 . 地面自动站观测资料三级质量控制业务系统的研制[J] 气象,2007,33(1):19-24.
[ 60] BLÁZQUEZ-GARCÍA A, CONDE A, MORI U, et al. A review on outlier/anomaly detection in time series data
[J] ACM Computing Surveys,2021,54(3):1-56,33.
.
[ 61] DÍAZ J S P,CASTRILLO M,GARCÍA Á L. Deep learning based soft-sensor for continuous chlorophyll estimation
on decentralized data[J] Water Research,2023,246:120726.
.
[ 62] FU G, SAVIC D, BUTLER D. Making Waves: towards data-centric water engineering[J] Water Research,
.
2024,256:121585.
[ 63] SHEN C, APPLING A P, GENTINE P, et al. Differentiable modeling to unify machine learning and physical
models and advance geosciences[J] Nature Reviews Earth & Environment,2023,4:552-567.
.
[ 64] JAKUBIK J, VÖSSING M, KÜHL N, et al. Data-centric artificial intelligence[J] Business & Information Sys⁃
.
tems Engineering,2024,66(4):507-515.
[ 65] OUYANG W,GU X,YE L,et al. Exploring Variable Synergy in Multi-Task Deep Learning for Hydrological Mod⁃
.
eling[M] Authorea,2023.
[ 66] 欧阳文宇,叶磊,王梦云,等 . 深度学习水文预报研究进展综述Ⅰ——常用模型与建模方法[J] 南水北调与
.
水利科技(中英文),2022,20(4):650-659.
[ 67] LI Z, LIU H, ZHANG C, et al. Real-time water quality prediction in water distribution networks using graph
.
neural networks with sparse monitoring data[J] Water Research,2024,250:121018.
[ 68] GRANATA F, ZHU S, NUNNO F D. Advanced streamflow forecasting for Central European Rivers: the cutting-
edge kolmogorov-arnold networks compared to transformers[J] Journal of Hydrology,2024,645:132175.
.
.
[ 69] 张然,柴志勇,张婷,等 . 基于机器学习模型的洪水预报研究进展[J] 水利水电技术(中英文),2023,54
(11):89-101.
[ 70] MA K, FENG D, LAWSON K, et al. Transferring hydrologic data across continents-leveraging data-rich regions
to improve hydrologic prediction in data-sparse regions[J] Water Resources Research, 2021, 57(5):
.
e2020WR028600.
[ 71] NAIR T,SUNKARA V,FRAME J,et al. Deep hydrology:hourly,gap-free flood maps through joint satellite and
hydrologic modelling[C]/NeurIPS 2022 Workshop on Tackling Climate Change with Machine Learning. 2022.
/
[ 72] CHAUDHARY P, D’ ARONCO S, LEITÃO J P, et al. Water level prediction from social media images with a
multi-task ranking approach[J] ISPRS Journal of Photogrammetry and Remote Sensing,2020,167:252-262.
.
[ 73] SONG Y,SHEN C,LIU X. A surrogate model for shallow water equations solvers with deep learning[J] Journal of
.
Hydraulic Engineering,2023,149(11):04023045.
[ 74] WANG L, XU B, ZHANG C, et al. Exploring the trade-offs among hydropower benefits, environmental flow,
and surface water temperature in a large reservoir under deep uncertainty[J] Journal of Hydrology, 2023, 624:
.
129913.
[ 75] BAYDIN A G,PEARLMUTTER B A,RADUL A A,et al. Automatic differentiation in machine learning:a survey
[J] Journal of Marchine Learning Research,2018,18(153):1-43.
.
— 1130 —

