Page 26 - 2025年第56卷第9期
P. 26

[ 53] WANG C,TANG G,GENTINE P.  PrecipGAN:merging microwave and infrared data for satellite precipitation esti⁃
                                                        .
                      mation using generative adversarial network[J]  Geophysical Research Letters,2021,48(5):e2020GL092032.
               [ 54] WICKERT A D, SANDELL C T, SCHULZ B, et al.  Open-source Arduino-compatible data loggers designed for
                                   .
                      field research[J]  Hydrology and Earth System Sciences,2019,23(4):2065-2076.
               [ 55] EIDAM E F, LANGHORST T, GOLDSTEIN E B, et al.  OpenOBS: Open-source, low-cost optical backscatter
                      sensors for water quality and sediment-transport research[J]  Limnology and Oceanography: Methods, 2022, 20
                                                                   .
                      (1):46-59.
               [ 56] LANGHORST T,PAVELSKY T,EIDAM E,et al.  Increased scale and accessibility of sediment transport research
                                                                          .
                      in rivers through practical,open-source turbidity and depth sensors[J]  Nature Water,2023,1(9):760-768.
               [ 57] OVEREEM A, LEIJNSE H, UIJLENHOET R.  Country-wide rainfall maps from cellular communication networks
                         .
                      [J]  Proceedings of the National Academy of Sciences,2013,110(8):2741-2745.
               [ 58] SUNKARA V,PURRI M,SAUX B L,et al.  Street to cloud:improving flood maps with crowdsourcing and seman⁃
                      tic segmentation[C]/ NeurIPS 2020 Workshop on Tackling Climate Change with Machine Learning.  2020.
                                     /
                                                                               .
               [ 59] 任芝花,熊安元 .  地面自动站观测资料三级质量控制业务系统的研制[J]  气象,2007,33(1):19-24.
               [ 60] BLÁZQUEZ-GARCÍA A, CONDE A, MORI U, et al.  A review on outlier/anomaly detection in time series data
                      [J]  ACM Computing Surveys,2021,54(3):1-56,33.
                         .
               [ 61] DÍAZ J S P,CASTRILLO M,GARCÍA Á L.  Deep learning based soft-sensor for continuous chlorophyll estimation
                      on decentralized data[J]  Water Research,2023,246:120726.
                                        .
               [ 62] FU  G, SAVIC  D, BUTLER  D.   Making  Waves: towards  data-centric  water  engineering[J]   Water  Research,
                                                                                             .
                      2024,256:121585.
               [ 63] SHEN  C, APPLING  A  P, GENTINE  P, et  al.   Differentiable  modeling  to  unify  machine  learning  and  physical
                      models and advance geosciences[J]  Nature Reviews Earth & Environment,2023,4:552-567.
                                                .
               [ 64] JAKUBIK J, VÖSSING M, KÜHL N, et al.  Data-centric artificial intelligence[J]  Business & Information Sys⁃
                                                                                     .
                      tems Engineering,2024,66(4):507-515.
               [ 65] OUYANG W,GU X,YE L,et al.  Exploring Variable Synergy in Multi-Task Deep Learning for Hydrological Mod⁃
                             .
                      eling[M]  Authorea,2023.
               [ 66] 欧阳文宇,叶磊,王梦云,等 .  深度学习水文预报研究进展综述Ⅰ——常用模型与建模方法[J]  南水北调与
                                                                                                 .
                      水利科技(中英文),2022,20(4):650-659.
               [ 67] LI  Z, LIU  H, ZHANG  C, et  al.   Real-time  water  quality  prediction  in  water  distribution  networks  using  graph
                                                        .
                      neural networks with sparse monitoring data[J]  Water Research,2024,250:121018.
               [ 68] GRANATA F, ZHU S, NUNNO F D.  Advanced streamflow forecasting for Central European Rivers: the cutting-
                      edge kolmogorov-arnold networks compared to transformers[J]  Journal of Hydrology,2024,645:132175.
                                                                   .
                                                                              .
               [ 69] 张然,柴志勇,张婷,等 .  基于机器学习模型的洪水预报研究进展[J]  水利水电技术(中英文),2023,54
                      (11):89-101.
               [ 70] MA K, FENG D, LAWSON K, et al.  Transferring hydrologic data across continents-leveraging data-rich regions
                      to  improve  hydrologic  prediction  in  data-sparse  regions[J]   Water  Resources  Research, 2021, 57(5):
                                                                     .
                      e2020WR028600.
               [ 71] NAIR T,SUNKARA V,FRAME J,et al.  Deep hydrology:hourly,gap-free flood maps through joint satellite and
                      hydrologic modelling[C]/NeurIPS 2022 Workshop on Tackling Climate Change with Machine Learning.  2022.
                                       /
               [ 72] CHAUDHARY P, D’ ARONCO S, LEITÃO J P, et al.  Water level prediction from social media images with a
                      multi-task ranking approach[J]  ISPRS Journal of Photogrammetry and Remote Sensing,2020,167:252-262.
                                             .
               [ 73] SONG Y,SHEN C,LIU X.  A surrogate model for shallow water equations solvers with deep learning[J]  Journal of
                                                                                                   .
                      Hydraulic Engineering,2023,149(11):04023045.
               [ 74] WANG  L, XU  B, ZHANG  C, et  al.   Exploring  the  trade-offs  among  hydropower  benefits, environmental  flow,
                      and surface water temperature in a large reservoir under deep uncertainty[J]  Journal of Hydrology, 2023, 624:
                                                                               .
                      129913.
               [ 75] BAYDIN A G,PEARLMUTTER B A,RADUL A A,et al.  Automatic differentiation in machine learning:a survey
                      [J]  Journal of Marchine Learning Research,2018,18(153):1-43.
                         .
                — 1130   —
   21   22   23   24   25   26   27   28   29   30   31