Page 123 - 2025年第56卷第10期
P. 123

尽管 AGR-CrackNet 在裂缝分割上取得了良好的效果,但仍在数据准备和水下裂缝图像分割方面
              存在一些局限性。未来研究将进一步探索将分类网络与 AGR-CrackNet 相结合,同时设计符合水下裂
              缝灰度分布特征的裂缝模拟方法,以提升裂缝图像分割的自动化水平和应用范围。

              参   考    文   献:


               [ 1 ] 徐小蓉,余舜尧,金峰,等 .  整体浇筑堆石混凝土拱坝施工期温度监测与等效均质仿真研究[J]  水利学报,
                                                                                                  .
                      2023,54(12):1404-1414.
               [ 2 ] 李泽鹏,黄耀英,余正源,等 .  早龄期损伤水工混凝土自然自愈合效果试验研究[J]  中国水利水电科学研究
                                                                                        .
                      院学报(中英文),2023,21(6):511-518.
               [ 3 ] 甘磊,吴健,马泽锴 .  高混凝土重力坝坝踵裂缝水力劈裂特性分析[J]  水利水电科技进展,2020,40(6):
                                                                              .
                      23-27,59.
               [ 4 ] CAMPBELL L,CONNOR R,WHITEHEAD J,et al.  Benchmark for evaluating performance in visual inspection of
                      fatigue cracking in steel bridges[J]  Journal of Bridge Engineering,2020,25(1):04019115.
                                                .
               [ 5 ] 孙林远,黄昊,陈康,等 .  细观尺度下表面波法检测混凝土表面裂缝深度研究[J]  水利学报,2024,55(8):
                                                                                      .
                      942-954.
                                                                                                    .
               [ 6 ] SUN Y,WAN L,GAN Y,et al.  Design of motion control of dam safety inspection underwater vehicle[J]  Journal
                      of Central South University,2012,19(6):1522-1529.
               [ 7 ] XIANG Y,SHENG J,WANG L,et al.  Research progresses on equipment technologies used in safety inspection,
                      repair,and reinforcement for deepwater dams[J]  Science China:Technological Sciences,2022,65(5):1059-
                                                          .
                      1071.
                                                                                            .
               [ 8 ] 周云,张文杰,陈祎林,等 .  基于无人机单目视频的道路裂缝定位与量化方法[J/OL]  工程力学,1-14
                                 .
                                       /
                      [2025-09-11]  https:/link.cnki. net/urlid/11.2595.o3.20241108.1437.028.
               [ 9 ] 蔡跃波,向衍,盛金保,等 .  重大水利工程大坝深水检测及突发事件监测预警与应急处置研究及应用[J]  岩
                                                                                                        .
                      土工程学报,2023,45(3):441-458.
               [ 10] 王文斌,王啸霆,王涛,等 .  基于计算机视觉的混凝土表观裂缝识别和宽度测量[J]  地震工程与工程振动,
                                                                                        .
                      2024,44(3):41-51.
               [ 11] DORAFSHAN S, THOMAS R, MAGUIRE M.  Comparison of deep convolutional neural networks and edge detec⁃
                                                           .
                      tors for image-based crack detection in concrete[J]  Construction and Building Materials,2018,186:1031-1045.
               [ 12] TALAB A,HUANG Z,XI F,et al.  Detection crack in image using Otsu method and multiple filtering in image pro⁃
                      cessing techniques[J]  Optik,2016,127(3):1030-1033.
                                      .
               [ 13] FUJITA Y, HAMAMOTO Y.  A robust automatic crack detection method from noisy concrete surfaces[J]  Machine
                                                                                                    .
                      Vision and Applications,2011,22(2):245-254.
                                                                                              .
               [ 14] ZOU Q,CAO Y,LI Q,et al.  Crack Tree:Automatic crack detection from pavement images[J]  Pattern Recogni⁃
                      tion Letters,2012,33(3):227-238.
               [ 15] KHERADMANDI N,MEHRANFAR V.  A critical review and comparative study on image segmentation-based tech⁃
                      niques for pavement crack detection[J]  Construction and Building Materials,2022,321:126162.
                                                   .
               [ 16] LIU Z,CAO Y,WANG Y,et al.  Computer vision-based concrete crack detection using U-net fully convolutional
                               .
                      networks[J]  Automation in Construction,2019,104:129-139.
               [ 17] 周迅,李永龙,周颖玥,等 .  基于改进 DeepLabV3+网络的坝面裂缝检测方法[J]  清华大学学报(自然科学
                                                                                      .
                      版),2023,63(7):1153-1163.
               [ 18] ZOU Q,ZHANG Z,LI Q,et al.  DeepCrack:Learning hierarchical convolutional features for crack detection[J]
                                                                                                          .
                      IEEE Transactions on Image Processing,2019,28(3):1498-1512.
                                                                                                          .
               [ 19] CHEN  D, KANG  F, LI  J, et  al.   Enhancement  of  underwater  dam  crack  images  using  multi-feature  fusion[J]
                      Automation in Construction,2024,167:105727.
               [ 20] WENG X, HUANG Y, LI Y, et al.  Unsupervised domain adaptation for crack detection[J]  Automation in Con⁃
                                                                                           .
                      struction,2023,153:104939.
               [ 21] MA N,FAN R,XIE L.  UP-CrackNet:Unsupervised pixel-wise road crack detection via adversarial image restora⁃
                            .
                      tion[J]  IEEE Transactions on Intelligent Transportation Systems,2024,25(10):13926-13936.
                — 1370   —
   118   119   120   121   122   123   124   125   126   127   128