Page 57 - 水利学报2021年第52卷第3期
P. 57
ta Systems,2013,2(1):165-176 .
[ 18] YU G,WEN X,SUN X,et al . Overview of ChinaFLUX and evaluation of its eddy covariance measurement[J].
Agricultural and Forest Meteorology,2006,137(3/4):125-137 .
[ 19] ZHANG Y,SONG C,SUN G,et al . Development of a coupled carbon and water model for estimating global gross
primary productivity and evapotranspiration based on eddy flux and remote sensing data[J]. Agricultural and For⁃
est Meteorology,2016,223:116-131 .
[ 20] 李新,刘绍民,马明国,等 . 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进
展,2012,27(5):481-498 .
[ 21] 赵风华,于贵瑞 . 陆地生态系统碳—水耦合机制初探[J]. 地理科学进展,2008,27(1):32-38 .
[ 22] CIAIS P,REICHSTEIN M,VIOVY N,et al . Europe-wide reduction in primary productivity caused by the heat
and drought in 2003[J]. Nature,2005,437(1/2):529-533 .
[ 23] MU Q,ZHAO M,RUNNING S W . Improvements to a MODIS global terrestrial evapotranspiration algorithm[J].
Remote Sensing of Environment,2011,115(8):1781-1800 .
[ 24] BEER C,CIAIS P,REICHSTEIN M,et al . Temporal and among-site variability of inherent water use efficiency
at the ecosystem level[J]. Global Biogeochemical Cycles,2009,23(2):GB2018 .
[ 25] ZHOU S,YU B,HUANG Y,et al . The effect of vapor pressure deficit on water use efficiency at the subdaily
time scale[J]. Geophysical Research Letters,2014,41(14):5005-5013 .
[ 26] GUERRIERI R,BELMECHERI S,OLLINGER S V,et al . Disentangling the role of photosynthesis and stomatal
conductance on rising forest water-use efficiency[J]. Proceeding of the National Academy of Sciences,2019,116
(34):16909-16914 .
[ 27] KEENAN T F,HOLLINGER D Y,BOHRER G,et al . Increase in forest water-use efficiency as atmospheric car⁃
bon dioxide concentrations rise[J]. Nature,2013,499(7458):324-327 .
[ 28] SOH W K,YIOTIS C,MURRAY M,et al . Rising CO 2 drives divergence in water use efficiency of evergreen and
deciduous plants[J]. Science Advances,2019,5(12):eaax7906 .
[ 29] OLLINGER S,GOODALE C,HAYHOE K,et al . Potential effects of climate change and rising CO 2 on ecosys⁃
tem processes in northeastern US forests[J]. Mitigation and Adaptation Strategies for Global Change,2008,13
(5/6):467-485 .
[ 30] BEER C,REICHSTEIN M,TOMELLERI E,et al . Terrestrial gross carbon dioxide uptake:global distribution
and covariation with climate[J]. Science,2010,329(5993):834-838 .
[ 31] POTTER C S,RANDERSON J T,FIELD C B,et al . Terrestrial ecosystem production:a process model based on
global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811-841 .
[ 32] LANDSBERG J,WARING R . A generalised model of forest productivity using simplified concepts of radia⁃
tion-use efficiency,carbon balance and partitioning[J] . Forest Ecology and Management,1997,95(3):
209-228 .
[ 33] WENG E,LUO Y . Soil hydrological properties regulate grassland ecosystem responses to multifactor global
change:A modeling analysis[J]. Journal of Geophysical Research,2008,113:G03003 .
[ 34] YUAN W,LIU S,YU G,et al . Global estimates of evapotranspiration and gross primary production based on MO⁃
DIS and global meteorology data[J]. Remote Sensing of Environment,2010,114(7):1416-1431 .
[ 35] TAGUE C,BAND L . RHESSys:Regional Hydro-Ecologic Simulation System—An object-oriented approach to
spatially distributed modeling of carbon,water,and nutrient cycling[J] . Earth Interactions,2004,8(19):
1-42 .
[ 36] SUN G,HALLEMA D,ASBJORNSEN H . Ecohydrological processes and ecosystem services in the Anthropo⁃
cene:a review[J]. Ecological Processes,2017,6(1). DOI:10.1186/s13717-017-0104-6.
[ 37] 王根绪,钱鞠,程国栋 . 生态水文科学研究的现状与展望[J]. 地球科学进展,2001,16(3):314-323 .
[ 38] 丁一汇,任国玉,石广玉,等 . 气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J]. 气候变
化研究进展,2006,2(1):3-8 .
[ 39] 隋月,黄晚华,杨晓光,等 . 气候变化背景下中国南方地区季节性干旱特征与适应 I . 降水资源演变特征
[J]. 应用生态学报,2012,23(7):1875-1882 .
[ 40] 张建云,章四龙,王金星,等 . 近 50 年来中国六大流域年际径流变化趋势研究[J]. 水科学进展,2007,18
(2):230-234 .
— 307 —