Page 108 - 2021年第52卷第9期
P. 108

得进一步深入研究的问题。


               参   考   文   献:

                [ 1 ] 任秋兵,李明超,杜胜利,等 . 筑坝堆石料抗剪强度间接测定模型与实用计算公式研究[J]. 水利学报,

                       2019,50(10):1200-1213 .
                [ 2 ] 史秀志,郭霆,尚雪义,等 . 基于 PCA-BP 神经网络的岩石爆破平均粒度预测[J]. 爆破,2016,33(2):
                       55-61 .
                [ 3 ] 王仁超,吴松 . 基于 LM 算法的神经网络模型预测爆破块度[J]. 水力发电学报,2019,38(7):100-109 .
                [ 4 ] 徐泽平 . 混凝土面板堆石坝关键技术与研究进展[J]. 水利学报,2019,50(1):62-74 .
                [ 5 ] 黄习敏 . 基于图像识别的在线粒度检测方法研究与检测系统设计[D]. 南昌:江西理工大学,2019 .
                [ 6 ] WU X,LIU X Y,SUN W,MAO C G . An image-based method for online measurement of the size distribution
                       of iron green pellets using dual morphological reconstruction and circle-scan[J]. Powder Technology, 2019,
                       347:186-198 .
                [ 7 ] SERESHKI F,HOSEINI S M,ATAEI M . Blast fragmentation analysis using image processing[J]. Internation⁃
                       al Journal of Mining and Geo-Engineering,2016,2:211-218 .
                [ 8 ] GAO T,WANG W X,LIU W,et al . Rock particle image segmentation based on improved normalized cut[J].
                       International Journal of Control and Automation,2017,10:271-286 .
                [ 9 ] 唐晓泉,首祥云,陈世悦,等 . 条件颗粒分割方法研究[J]. 中国图象图形学报,2004,9(5):55-60 .
                [ 10] ZHANG Z L,YANG J G,SU X L,et al . Multi-scale image segmentation of coal piles on a belt based on the
                       Hessian matrix[J]. Particuology,2013,11:549-555 .
                [ 11] 冯阿瑞 . 图像归一化分割方法研究[D]. 重庆:重庆大学,2014 .
                [ 12] SIMONYAN K,ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[Z]. arX⁃
                       iv preprint arXiv:1409 . 1556,2014 .
                [ 13] VLADIMIR GOLOVKO,MIKHNO EGOR,ALIAKSANDR BRICH,et al . A Shallow Convolutional Neural Net⁃
                       work for Accurate Handwritten Digits Classification[M]. Springer International Publishing,2017 .
                [ 14] LONG J, SHELHAMER E, DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE
                       Transactions on Pattern Analysis and Machine Intelligence,2014,39(4):640-651 .
                [ 15] CHEN L C,PAPANDREOU G,KOKKINOS I,et al . DeepLab:Semantic image segmentation with deep convo⁃
                       lutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Ma⁃
                       chine Intelligence,2018,40(4):834-848 .
                [ 16] CHEN L C,PAPANDREOU G,SCHROFF F,et al . Rethinking atrous convolution for semantic image segmen⁃
                                                                /
                       tation[EB/OL]. (2017-05-12)[2019-07-19]. https:/arxiv . org/abs/1706 . 05587 .
                [ 17] CHEN L C,ZHU Y,PAPANDREOU G,et al . Encoder-decoder with atrous separable convolution for seman⁃
                                                                            /
                       tic image segmentation[EB/OL]. (2018-08-22)[2019-07-19]. https:/arxiv . org/abs/1802 . 02611v1 .
                [ 18] FERNLUND J M R,ZIMMERMAN R W,KRAGIC D . Influence of volume/mass on grain-size curves and con⁃
                       version of image-analysis size to sieve size[J]. Engineering Geology,2007,90(3-4):124-137 .
                [ 19] A1-THYABAT S,MILE N J . An improved estimation of size distribution from particle profile measurement[J].
                       Powder Technology,2006,166(3):152-160 .
                [ 20] A1-THYABAT S,MILE N J,KOH T S . Estimation of the size distribution of particles moving on a conveyor belt
                      [J]. Minerals Engineering,2007,20(1):72-83 .
                [ 21] ZHANG Z L,YANG J G,SU X L, et al . Analysis of large particle sizes using a machine vision system[J].
                       Physicochemical Problems of Mineral Processing,2013,49(2):397-405 .
                [ 22] ONEDERRA I, THURLEY M J, CATALAN A . Measuring blast fragmentation at Esperanza mine using
                       high-resolution 3D laser scanning[J]. Transactions of the Institution of Mining and Metallurgy,Section A:Min⁃
                       ing Technology,2015,124(1):34-36 .
                [ 23] CAMPBELL A D,THURLEY M J . Application of laser scanning to measure fragmentation in underground mines
                      [J]. Mining Technology,DOI:10.1080/14749009.2017.1296668.

                 — 1114  —
   103   104   105   106   107   108   109   110   111   112   113