Page 30 - 2022年第53卷第2期
P. 30
[ 47] LI Z,SUN Z,CHEN Y,et al . The net GHG emissions of the Three Gorges Reservoir in China:II . Post-im⁃
poundment GHG inventories and full-scale synthesis[J]. Journal of Cleaner Production,2020,282:123961 .
[ 48] TANG K W,MCGINNIS D F,FRINDTE K,et al . Paradox reconsidered:Methane oversaturation in well-oxygen⁃
ated lake waters[J]. Limnology and Oceanography,2014,59(1):275-284 .
[ 49] DELSONTRO T,DEL GIORGIO P A,PRAIRIE Y T . No longer a paradox:the interaction between physical
transport and biological processes explains the spatial distribution of surface water methane within and across lakes
[J]. Ecosystems,2018,21(6):1073-1087 .
[ 50] MENDONCA R,MUELLER R A,CLOW D,et al . Organic carbon burial in global lakes and reservoirs[J]. Na⁃
ture Communications,2017,8(1):1694 .
[ 51] 韩其为,潘庆燊,曹叔尤 . 三峡水库淤积观测成果分析与近期(2008-2027)水库淤积计算[M]. 北京:中
国科学技术出版社,2013 .
[ 52] MENDONCA R,KOSTEN S,SOBEK S,et al . Organic carbon burial efficiency in a subtropical hydroelectric res⁃
ervoir[J]. Biogeosciences,2016,13(11):3331-3342 .
[ 53] PRAIRIE Y T,MERCIER-BLAIS S,HARRISON J A,et al . A new modelling framework to assess biogenic
GHG emissions from reservoirs:The G-res tool[J]. Environmental Modelling & Software,2021,143:105117 .
[ 54] WIEDMANN T,MINX J . A Definition of“Carbon Footprint”[M]/PERTSOVA C C,ed.Ecological Economics
/
Research Trends . USA.:Nova Science Publishers,2008:366 .
[ 55] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. Greenhouse gases — Carbon footprint of prod⁃
ucts — Requirements and guidelines for quantification: ISO14067-2018[S/OL].[2021-08-08] https://www.iso.
.
org/standard/71206.html.
[ 56] GAGNON L . Hydropower:a major tool to reduce greenhouse gas emissions[J]. International Journal on Hydro⁃
power & Dams,1997,4(4):20-22 .
[ 57] GAGNON L,VANDEVATE J F . Greenhouse gas emissions from hydropower-The state of research in 1996[J].
Energy Policy,1997,25(1):7-13 .
[ 58] HONDO H . Life cycle GHG emission analysis of power generation systems:Japanese case[J]. Energy,2005,30
(11/12):2042-2056 .
[ 59] RIBEIRO F de M,DA SILVA G A . Life-cycle inventory for hydroelectric generation:a Brazilian case study[J].
Journal of Cleaner Production,2010,18(1):44-54 .
[ 60] HERTWICH E G . Addressing biogenic greenhouse gas emissions from hydropower in LCA[J]. Environmental
Science & Technology,2013,47(17):9604-9611 .
[ 61] KREY V,MASERA O,BLANFORD G,et al . Annex 2-Metrics and methodology[M]/Edenhofer O, Pi⁃
/
chs-Madruga R, Sokona Y,et al . IPCC Working Group III Contribution to AR5 . Cambridge University Press,
2014 .
[ 62] INTERNATIONAL HYDROPOWER ASSOCIATION . 2018 Hydropower Status Report[R/OL]. UK:HA,2018,
I
/
[2021-08-07]https:/hydropow ⁃ er-assets.s3.eu-west-2.amazonaws.com/publications-docs/iha_2018_hydropow⁃
er_status_report_4.pdf
[ 63] ZHANG Q,KARNEY B,MACLEAN H L,et al . Life-Cycle Inventory of Energy Use and Greenhouse Gas Emis⁃
sions for Two Hydropower Projects in China[J]. Journal of Infrastructure Systems,2007,13(4):271-279 .
[ 64] ZHANG S,PANG B,ZHANG Z . Carbon footprint analysis of two different types of hydropower schemes:compar⁃
ing earth-rockfill dams and concrete gravity dams using hybrid life cycle assessment[J]. Journal of Cleaner Pro⁃
duction,2015,103:854-862 .
[ 65] LI Z,DU H,XU H,et al . The carbon footprint of large- and mid-scale hydropower in China:Synthesis from five
s
China’ largest hydro-project[J]. Journal of Environmental Management,2019,250:109363 .
[ 66] VARUN,PRAKASH R,BHAT I K . Life cycle energy and gHG analysis of hydroelectric power development in in⁃
dia[J]. International Journal of Green Energy,2010,7(4):361-375 .
[ 67] VARUN,PRAKASH R,BHAT I K . Life cycle greenhouse gas emissions estimation for small hydropower
schemes in India[J]. Energy,2012,44(1):498-508 .
[ 68] PACCA S . Impacts from decommissioning of hydroelectric dams:a life cycle perspective[J]. Climatic Change,
— 152 —