Page 107 - 2022年第53卷第12期
P. 107

(3):40 - 42.
                [ 8] 曾永顺,张世杰,陶然,等.叶轮与导叶匹配关系对立式离心泵水力特性影响的实验研究[J].水利学报,
                      2022,53(2):212 - 219.
                [ 9] 李永业,孙西欢,李飞,等.动边界同心环形缝隙流研究[J].农业机械学报,2012,43(3):230 - 234.
                [10] 李岩,张金良,白玉川,等.有压输沙管道脉动压强特性试验研究[J].水利学报,2020,51(8):967 - 978.
                [11] 王玉蓉,张建民,刁明军,等.脉动水压力沿缝隙传播的试验研究[J].水利学报,2002,33(12):44 - 48.
                [12] 李爱华,刘沛清.脉动压力在消力池底板缝隙传播的瞬变流模型和渗流模型统一性探讨 [J].水利学报,
                      2005,36(10):1236 - 1240.
                [13] 李爱华,朱江,李成华.缝隙中脉动压力传播模型的进一步探讨[J].水利学报,2015,46(5):626 - 630.
                [14] 马斌,岳颖.水垫塘异型构造底板缝隙水流脉动压力特性研究[J].天津大学学报 (自然科学与工程技术
                       版),2016,49(1):96 - 102.
                [15] 马斌,马永磊,李昕尧.带键槽透水底板脉动压力试验研究[J].水利水运工程学报,2017,39(4):76 - 82.
                [16] LAIMASJ,LIH.Effectsofgapwidthonflowmotionsaroundtwin - boxgirdersandvortex - inducedvibrations[J].
                       JournalofWindEngineering& IndustrialAerodynamics,2015,139(4):37 - 49.
                [17] 孙建,陈长植.反拱水垫塘底板缝隙中动水压强特性的试验研究[J].水力发电学报,2002,21(1):88 - 95.
                [18] 张春财,孙建,郝秀玲.扬压力作用下反拱水垫塘缝隙动水压力研究[J].四川大学学报 (工程科学版),
                      2012,44(1):26 - 31.
                [19] 中国科学院.中国学科发展战略———流体动力学(学术引领系列)[M].北京:科学出版社,2014.
                [20] KANGKL,YEOKS.HybridPOD - FFTanalysisofnonlinearevolvingcoherentstructuresofDNSwavepacketin
                       laminar - turbulenttransition[J].PhysicsofFluids,2017,29(8):084105.
                [21] LIANGZ,DONGH.Onthesymmetryofproperorthogonaldecompositionmodesofalowaspect - ratioplate[J].
                       PhysicsofFluidsAFluidDynamics ,2015,27(6):063601.
                [22] LUMLEYJL.StochasticToolsinTurbulence[M].NewYork:AcademicPress,2007.
                [23] SIROVICH L, RODRIGUEZ JD.Coherentstructuresandchaos: A modelproblem[J].PhysicsLettersA,
                      1987,120(5):211 - 214.



                                Diagnosticanalysisofmoving - boundaryannulargapflowby
                                             ProperOrthogonalDecomposition

                                          LIYongye,ZHAOYiming,SONGXiaoteng
                      (CollegeofWaterConservancyScienceandEngineering,TaiyuanUniversityofTechnology,Taiyuan 030024,China)


                  Abstract:Thefluidstressofgapflow,flowinducedvibrationandothertransientphenomenatendtohavesomein
                  fluenceonthestableoperationofhydraulicmachinery.Thetransientphenomenonoftheentiregapflowcannotbe
                  quantitativelydescribedbylaminarapproximationorpressuremeasurementnearthewall.Sotheannulargapflow
                  withmovinginnerboundaryofpressuredpipeflowwasdiagnosedbyProperOrthogonalDecomposition(POD)
                  whiletheflowwasfullyturbulence.Astheresultoffluidstress,theReynoldsstressincreasesrapidlyinthefrontof
                  theflowfield ,maintainsacertainvalueinthemiddle,anddecreasesrapidlyintherearoftheflowfield.The
                  strengthofconvectivetransportintheradialdirectionofthemainflowis4 - 7timeshigherthanthattheradialtrans
                  portinthecirculardirection,and6 - 14timeshigherthanthemainflowincirculardirection.Abouttheflow - in
                  ducedvibration ,thePowerSpectrumDensity(PSD)functionhasthreesubzonesinfrequencydomain.Forthelow -
                  frequencydomain(0to10Hz)andhigh - frequencydomain(morethan120Hz),thePSDvalueislargerwhile
                  thegapwidthisminor ;butthemiddle - frequencydomainhasanadversetrend.Thelimitationeffectonlarger -
                  scalevibrationismoresignificantwhilethegapwidthgetsmaller.Besides ,thecoherentstructuresofthefloware
                  identifiedbyPODmethod,andthereconstructionofReynoldsstressesbythelower - ordermodescanbeabetter
                  estimationforthetotalReynoldsstressesofflow.
                  Keywords:annulargapflow;movingboundary;ProperOrthogonalDecomposition;PowerSpectrum Density;
                  Reynoldsstress

                                                                                    (责任编辑:王 婧)

                                                                                                   4
                                                                                              —   1 9 9 —
   102   103   104   105   106   107   108   109   110   111   112