Page 96 - 2023年第54卷第5期
P. 96

50(6):687 - 698.
                [32] 任秋兵,沈扬,李明超,等.水工建筑物安全监控深度分析模型及其优化研究[J].水利学报,2021,52
                       (1):71 - 80.
                [33] 陈俊杰.耦合 BIM的长距离输水渠道无人机巡检与险情智能图像识别研究[D].天津:天津大学,2020.
                [34] RENQ,WANGG,LIM,etal.Predictionofrockcompressivestrengthusingmachinelearningalgorithmsbased
                       onspectrumanalysisofgeologicalhammer[J].GeotechnicalandGeologicalEngineering,2019,37(1):475 - 489.
                [35] HANS,LIH,LIM,etal.Measuringrocksurfacestrengthbasedonspectrogramswithdeepconvolutionalnet
                       works [J].Computers& Geosciences,2019,133:104312.
                [36] HANS,LIH,LIM,etal.A deeplearningbasedmethodforthenon - destructivemeasuringofrockstrength
                       throughhammeringsound [J].AppliedSciences,2019,9(17):3484.
                [37] LUX,XUY,TIANY,etal.Adeeplearningapproachtorapidregionalpost - eventseismicdamageassessment
                       usingtime - frequencydistributionsofgroundmotions[J].EarthquakeEngineering& StructuralDynamics,2021,
                      50(6):1612 - 1627.
                [38] LIAOW,CHENX,LUX,etal.Deeptransferlearningandtime - frequencycharacteristics - basedidentification
                       methodforstructuralseismicresponse [J].FrontiersinBuiltEnvironment,2021,7(10).doi:10.3389?fbuil.
                      2021.627058.
                [39] HEK,ZHANG X, REN S, etal.Deep residuallearningforimagerecognition[C]??IEEE Conferenceon
                       ComputerVisionandPatternRecognition ,2016.
                [40] SZEGEDYC,IOFFES,VANHOUCKE V,etal.Inception - v4, Inception - resnetandtheimpactofresidual
                       connectionsonlearning [C]??ProceedingsoftheAAAIConferenceonArtificialIntelligence,2017.



                            IntelligentidentificationandanalysisofPCCPwirebrokensignalin
                                       waterdiversionprojectusingprototypetesting

                           ZHANGYe,YUANSimin,LIYanlong,WENLifeng,SIZheng,SUNKaiyu
                    (StateKeyLaboratoryofEco - hydraulicsinNorthwestAridRegion,Xi’anUniversityofTechnology,Xi’an 710048,China)


                  Abstract:Inwaterdiversionprojects,thebreakageofsteelwirescaneasilyleadtostructuralandfunctionalfail
                  ureofPrestressedConcreteCylinderPipes (PCCP).Thisstudyaimstoanalyzesignalcharacteristicsandidentify
                  thetypeofwirebreakageusingintelligentlearningmodels.Intheresearch,Aprototypetestforwirebreakagewas
                  conductedonanembeddedPCCPwithaninnerdiameterof3.4metersandalengthof5meters.Real - timemonito
                  ringwascarriedoutusingadistributedopticalfibersensortodetectcuttingwire,corrosionwire,andimpactnoise
                  signals.BasedonShort - timeFourierTransform(STFT)anddeeplearningmodels,thewirebreakagesignalswere
                  reconstructed.Finally ,awirebreakagesignalrecognitionmodelwasestablishedusingasupportvectormachine.
                  BasedonthereconstructionofsignalsusingInception - ResNet - v2 ,thelowestandhighestaccuracyofthewire
                  breakagerecognitionmodelare92.9% and100%,respectively.Theeffectivenessofthesignalreconstructionwas
                  alsodemonstratedusing t - SNE.Thisstudyhasachievedeffectiverecognitionofwirebreakagetypesbycombining
                  differentintelligentlearningmethods.Itprovidesnewmethodsforlong - term wirebreakagemonitoringandearly
                  warninganalysisinPCCPoperation.
                  Keywords:prestressedconcretecylinderpipes(PCCP);deeplearning;knowledgetransfer;short - timeFourier
                  transform ;wirebrokensignal;intelligentidentification


                                                                                    (责任编辑:韩 昆)










                —  5 9  —
                     8
   91   92   93   94   95   96   97   98   99   100   101