Page 133 - 2023年第54卷第6期
P. 133

[19] 靳聪聪,迟世春,聂章博.基于地震变形易损性的高土石坝抗震安全分析 [J].岩土工程学报,2020,42
                       (2):334 - 343.
                [20] 郭秀吉,陈立,颜小飞,等.2008年以来紫坪铺水库淤积过程及库容变化特性分析[J].中国农村水利水
                       电,2022(7):55 - 60,66.
                [21] 杨正权,刘小生,周国斌,等.高面板堆石坝面板地震动力反应特性大型振动台模型试验研究[J].振动工
                       程学报,2018,31(2):209 - 218.
                [22] 刘晶波,宝鑫,李述涛,等.采用黏弹性人工边界时显式算法稳定性条件[J].爆炸与冲击,2022,42(3):
                      124 - 137.
                [23] 孙陶,高希章,杨建.紫坪铺混凝土面板堆石坝应力- 应变分析[J].岩土力学,2006(2):247 - 251.
                [24] 楚金旺,朱晟,黄亚梅.基于实际震害的土石坝永久变形估算[J].中国水利水电科学研究院学报,2017,
                      15(6):409 - 417.
                [25] GONGJ,ZOUDG,KONGXJ,etal.Thesimulationofhighcompressivestressandextrusionphenomenonfor
                       concretefaceslabsinCFRDsunderstrongseismicloads [J].SoilDynamicsandEarthquakeEngineering,2021,
                      147:106792.
                [26] 孔宪京,周晨光,邹德高,等.高土石坝- 地基动力相互作用的影响研究 [J].水利学报,2019,50(12):
                      1417 - 1432.



                                Studyofseismicwaveinputofdam bedrockbasedonmodal
                                         decompositionandcloudparticlenetwork

                                                                                    1,3
                                                                                                        1,3
                                                                   1,3
                                          1
                                                       1
                               1,2
               ZHANGHongyang ,LITong,YANGYige,DINGZelin ,ZHANGXianqi ,WANGShunsheng
                    (1.SchoolofWaterConservancy,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou 450046,China;
                         2.QingYuanCollege,NorthChinaUniversityofWaterResourcesandElectricPower,Xinyang 464200,China;
                    3.CollaborativeInnovationCenterforEfficientUtilizationofWaterResourcesinYellowRiverBasin,Zhengzhou 450046,China)
                  Abstract:Theinputofbedrockseismicwaveintheexistingseismicevaluationofdamsmostlyusesactualdataor
                  manualgeneration,anditbecomesparticularlydifficulttodeterminebedrockseismicwavewhenthedam sitein
                  strumentationisdamagedorhistoricalinformationisinadequate.Therefore , theresearchideaofinversionof
                  seismicwaveinputtobedrockofearthandrockdamsisproposed ,andahybriddecomposition - training - inversion
                  modelbasedonempiricalmodaldecompositionandcloudparticlenetworkwasdeveloped,determinationofseismic
                  waveofdambedrockbyusingonlyasmallnumberofperipheralmeasurementstationswithoutrelyingonhistorical
                  seismicdataofthesite.Firstly ,themeasuredseismicwaverecordsofsurfaceandbedrockwereselected,andthe
                  accelerationsequencewasdecomposedbytheempiricalmodaldecompositionmethod.Secondly ,theparticleswarm
                  algorithmwasusedtoestablishthemappingwiththeneuralnetworkconnectionweights ,optimizingtheglobal
                  searchcapabilityofparticleswarmalgorithmsusingcloudtheory ,establishtheinversionmodel,andusethede
                  composedaccelerationsequenceasthetrainingsetforinversiontraining.Then ,theseismicwaveinformationmeas
                  uredatthesurface ,whichwasinasimilargeologicalsituationasthedam,wasselectedandcombinedwiththein
                  versionmodeltoinverttheseismicwaveinputtothebedrockofthedam.Finally ,theZipingpudamisusedasare
                  searchexampletoverifytheapplicabilityofthemodelbycomparingthetraditionalinputmethods.Theresultsshow
                  thatthehybridmodelproposedinthispaperhasacomprehensiveandstableperformanceandcaninverttheseismic
                  accelerationsequencesbetter ,withthemodelcoefficientofdeterminationaregreaterthan0.9,meanabsoluteper
                  centageerrorareabout11%.Atthesametime ,thecalculationofbedrockseismicwaveobtainedfromtheinversion
                  ofthispaperreducesthecalculationerrorby0.79%~17.28% comparedwiththeexistingresearchresults ,whichis
                  moreconsistentwiththeactualdynamicresponseoftheproject,thusprovidinganewwaytosolvetheproblem of
                  acquiringseismicwavefromthebedrockinputofthedam.
                  Keywords:seismicwaveinput;earthrockdam;inversion;radialbasisfunctionneuralnetwork;cloudtheory;
                  particleswarmoptimization;empiricalmodaldecomposition

                                                                                    (责任编辑:韩 昆)

                                                                                                —  7 6 1 —
   128   129   130   131   132   133   134   135