Page 65 - 2024年第55卷第9期
P. 65
Predictionmodelofgradationevolutionconsideringparticle
breakageofcarbonaceousmudstone
1
1
2
1
1
FUHongyuan,YANGHaitao,WUErlu,ZENGLing,ZHONGTao,JIANGYiyun 1
(1.SchoolofCivilEngineering,ChangshaUniversityofScienceandTechnology,Changsha 410114,China;
2.SchoolofCivilEngineering,ShaoxingUniversity,Shaoxing 312000,China)
Abstract:Inordertoaccuratelypredictthechangeofparticlebreakageandgradationcurveofcarbonaceousmud
stoneduringimpactloading,amathematicalmodelof“impactenergyandwatercontent - crushingindex - gradation
distribution” ofcarbonaceousmudstonewasestablished.Firstly, byintroducingasingleparametergrading
equationthatcan describethecontinuousgradingcurve , themathematicalrelationship between thesingle
parametergradingequationandtheparticlebreakagerate B w isestablished,andtheconversionof“crushingindex -
gradationdistribution ”isrealized.Aseriesofimpacttestswithdifferentwatercontentandimpactenergywerecar
riedoutbysettingthecontinuousgradationoftwotypicalcarbonaceousmudstonefillersofinverseStypeandhyper
bolictype.Theresultsshowthattheparticlebreakagerateofcarbonaceousmudstoneincreaseswiththeincreaseof
initialwatercontentwhentheimpactenergyisconstant ,regardlessofwhethertheinitialgradationofcarbonaceous
mudstoneishyperbolicdistributionorinverseS - typedistribution.Whenthewatercontentisconstant ,theparticle
breakagerateofcarbonaceousmudstoneincreaseswiththeincreaseofimpactenergy.Whentheimpactenergyrea
ches6.075kJ,theparticlebreakagerateremainsbasicallyunchanged,andtheparticlecontentofeachparticle
grouptendstobeastableproportionrelativetotheinitialcontent.Accordingtotherelationshipbetweentheparticle
breakagerate B w ofcarbonaceousmudstoneintheimpactprocessandtheinitialmoisturecontentandimpactener
gy ,themathematicalrelationshipbetweentheparticlebreakagerateandthemoisturecontentandimpactenergyis
established,andtheconversionof“impactenergyandmoisturecontent - crushingindex”isrealized,Amathemat
icalmodelof “impactenergyandwatercontent - crushingindex - gradationparameter”wasestablishedbyusingthe
crushingindexasthemedium,anditwasfoundthatthemodelcanbetterreflecttheevolutionlawofthegradation
curveofcarbonaceousmudstoneunderdifferentimpactenergyandwatercontentconditions.
Keywords:carbonmudstone;impacttest;gradationequation;particlebreakage;gradationevolution
(责任编辑:李 娜)
(上接第 1057页)
Dam deformationpredictionmodelbasedonself - adaptivetemporaldecompositionscreening
4
1,2
1,2
1,2,3
1,2
1,2
GUYu ,SUHuaizhi ,ZHANGShuai,YAOKefu ,LIUMingkai ,QIYining
(1.TheNationalKeyLaboratoryofWaterDisasterPrevention,HohaiUniversity,Nanjing 210098,China;
2.CollegeofWaterConservancyandHydropowerEngineering,HohaiUniversity,Nanjing 210098,China;
3.CooperativeInnovationCenterforWaterSafetyandHydroScience,HohaiUniversity,Nanjing 210098,China;
4.PowerChinaKunmingEngineeringCorporationLimited,Kunming 650051,China)
Abstract:Highprecisionanalysisandpredictionofdamdeformationisanimportantmeanstomasterdamwork
ingbehavioranddiagnosedamanomalies.Aimingattheproblemssuchasinsufficientinformationfeaturemining,
weakgeneralizationabilityanddifficultyinaccuratepredictionofexistingmodels,greyWolfalgorithmwasused
tooptimizethecompleteensembleempiricalmodedecompositionwithadaptivenoisetosolvethemultidimensional
parametercalibrationproblem,andthresholdevaluationindexeswereusedtoretaintheeffectiveinformationfea
turesofdeformationtimeseriesdata.Thecross - validationmethodiscombinedwithrecursivefeatureselection
method,andtheoptimalfactorsubsetisselectedbymultiplelearnerstoremoveredundantfeatures,extracteffec
tiveinformationandenhancetheinterpretabilityofthemodel.Consideringthecharacteristicsoftimeseriesdata ,
thenumberofstepsinthetimewindowofthebidirectionallongshortterm memoryneuralnetworkisoptimized,
andinordertoconstructdamdeformationanalysisandpredictionmodel,severalmethodssuchasnoisereduction
ofdamdeformationdataandinputofoptimalfeaturefactorsareused.Theresultsshowthatthemodelhasthea
bilityofaccuratelyminingnonlinearinformation,andthepredictionperformancehasbeensignificantlyimproved,
whichcanprovidereferencefordamsafetymonitoring.
Keywords:damdeformationprediction;greywolfalgorithm;thresholdnoisereduction;bidirectionallongshort
- termmemoryneuralnetwork ;completeensembleempiricalmodedecompositionwithadaptivenoise
(责任编辑:韩 昆)
— 1 0 0 —
7