Page 124 - 2024年第55卷第11期
P. 124

[16] 房昱纬,吴振君,盛谦,等.基于超前钻探测试的隧道地层智能识别方法[J].岩土力学,2020,41(7):
                      2494 - 2503.
                [17] XIAOH H,YANG W K,HU J,etal.Significanceandmethodology:Preprocessingthebigdataformachine
                       learningonTBM performance[J].UndergroundSpace,2022,7(4):680 - 701.
                [18] 余红玲,王晓玲,任炳昱,等.土石坝渗流性态分析的 IAO - XGBoost集成学习模型与预测结果解释 [J].
                       水利学报,2023,54(10):1195 - 1209.
                [19] 刘华吉,孙红林,张占荣,等.基于随钻参数的砂岩与砂质泥岩地层分界面智能识别[J].隧道建设(中英
                       文),2023,43(S1):304 - 312.
                [20] 王小龙,张军.钻孔数据处理与三维显示软件设计及应用[J].煤矿安全,2021,52(10):130 - 135.
                [21] LIJB,LIPY,GUOD,etal.Advancedpredictionoftunnelboringmachineperformancebasedonbigdata[J].
                       GeoscienceFrontiers ,2021,12(1):331 - 338.
                [22] 张晓菁,刘攀,周丽婷,等.考虑水文模型参数时变的水库水位多预见期实时预报———以水布垭水库为例
                       [ J].水利学报,2023,54(4):426 - 438.
                [23] ZHANGP,CHENRP,WUHN.Real - timeanalysisandregulationofEPBshieldsteeringusingRandomForest
                       [J].AutomationinConstruction,2019,106:102860.
                [24] 丁佳鑫,郭永峰,米丽娜.高斯噪声和 Lévy噪声激励下欠阻尼周期势系统的相变行为[J].山东大学学报
                       (理学版),2023,58(8):111 - 117.
                [25] 张刚,宋莹,张天骐.Levy噪声驱动下指数型单稳系统的随机共振特性分析[J].电子与信息学报,2017,
                      39(4):893 - 900.
                [26] 胡芳凝,王忠,刘超群.快速滑动平均滤波在 PPG信号去噪中的应用[J].物联网技术,2019,9(6):41 - 43.
                [27] 肖浩汉,陈祖煜,徐国鑫,等.基于 GRU算法的盾构掘进参数预测———以成都地铁 19号线为例[J].长
                       江科学院院报,2023,40(1):123 - 131.
                [28] 姜瑶,徐宗学,王静.基于年径流序列的五种趋势检测方法性能对比[J].水利学报,2020,51(7):845 - 857.
                [29] ZHANGH,CHENL,QUY,etal.Supportvectorregressionbasedongrid - searchmethodforshort - term wind
                       powerforecasting [J].JournalofAppliedMathematics,2014.doi:10.1155?2014?835.
                [30] 孟品超,李学源,贾洪飞,等.基于滑动平均法的轨道交通短时客流实时预测 [J].吉林大学学报 (工学
                       版),2018,48(2):448 - 453.



                              Researchonpreprocessingmethodsformonitoringdrillingdata


                            XIAOHaohan,CAORuilang,WANGYujie,ZHAOYufei,SUNYanpeng
                                (ChinaStateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,
                                 ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing 100048,China)


                  Abstract:Toaddresschallengesassociatedwithprocessingmulti - dimensionalheterogeneousmonitoringdrilling
                  data,thisstudyconductsananalysisofthecharacteristicsofmulti - boreholedrillingdataandintroducesadatapre
                  processingmethodleveragingstatisticalanalysisandmachinelearningtechniques.Thismethodologybeginswithan
                  examinationoftheoriginaldrillingdata ’sfeatures,establishescriteriaforextractingstabledrillingstagedata,de
                  finesparametersforidentifyingabnormaldrillingdata ,andassessestheeffectivenessofvariousmethodsforrepai
                  ringmissingdrillingdataandreducingnoise.Theresultsindicatethatthetwo - pointlinearinterpolationmethoda
                  chievedthelowesterrorindexandthemosteffectivemissingdatainterpolation.Additionally ,theButterworthfilter
                  demonstratedoptimalfilteringperformanceacrossvarioustypesofnoise.Subsequently ,alightweightautomatic
                  preprocessingsoftwarefordrillingdataisdeveloped ,anditsefficacyinswiftlycompletingtaskssuchasdataextrac
                  tion,classification,repair,andnoisereductionisvalidatedthroughengineeringcasestudies.Thisendeavorfur
                  nishesadependabletheoreticalframeworkandempiricaldatasupportforpracticalapplicationsinengineering.
                  Keywords:digitaldrilling;datapreprocessing;machinelearning;missingdatainterpolation;noisereduction


                                                                                    (责任编辑:李 娜)

                —  1 3 0 —
                     9
   119   120   121   122   123   124   125   126   127   128   129