Page 135 - 2024年第55卷第12期
P. 135

[30] 王泰华.青藏高原冻土变化的水碳效应研究[D].北京:清华大学,2021.
                [31] CUOL,ZHANGYX,BOHNTJ,etal.Frozensoildegradationanditseffectsonsurfacehydrologyinthenorth
                       ernTibetanPlateau[J].JournalofGeophysicalResearch,2015,120(16):8276 - 8298.
                [32] XIONGL,O’CONNORKM.Comparisonoffourupdatingmodelsforreal - timeriverflowforecasting[J].Hydro
                       logicalSciencesJournal ,2002,47(4):621 - 639.
                [33] 熊怡,周建中,孙 娜,等.基 于 自 适 应 变 分 模 态 分 解 和 长 短 期 记 忆 网 络 的 月 径 流 预 报 [J].水 利 学 报,
                      2023,54(2):172 - 183,198.
                [34] 杨姗姗,包为民,杨小强,等.微分响应在降雨误差修正中的应用[J].中 国 农 村 水 利 水 电,2015(1):
                      75 - 79.
                [35] 蒋语繤,瞿思敏,蒋思军,等.系统微分响应误差修正方法在 VIC模型中的应用与研究[J].中国农村水
                       利水电,2023(10):96 - 103.
                [36] 王慧敏,宋松柏,张更喜.基于季 节 长 记 忆 双 自 回 归 模 型 的 日 径 流 模 拟 [J].水 利 学 报,2023,54(6):
                      686 - 695.
                [37] 薛洋,杨光,许雷.基于 Kalman - ARIMA模型的大坝变形预测[J].中国农村水利水电,2016(12):117 -
                       119 ,123.



                          Researchonlowflowforecastbasedonadistributedhydrologicalmodel
                                            andautoregressiveerrorcorrection

                                        1,2
                                                                                        1,2
                                                       1,2
                                                                         3
                               HEYufen ,YANGHanbo ,DONGNingpeng,LIChangming
                                (1.DepartmentofHydraulicEngineering,TsinghuaUniversity,Beijing 100084,China;
                           2.StateKeyLaboratoryofHydroscienceandEngineering,TsinghuaUniversity,Beijing 100084,China;
                                  3.StateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,
                                 ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing 100038,China)

                  Abstract:Withtheincreasingimpactofclimatechangeandhumanactivities,droughteventsoccurfrequently,
                  andwatersupply - demandconflictsduringdryseasonsbecomemoreprominent.Therefore,accuratelowflowfore
                  castingbecomesincreasinglyimportant.Inthispaper ,thedistributedhydrologicalmodel(GBEHM)andautore
                  gressive(AR)errorcorrectionmethodwereusedtocorrectthesimulatedrunoff,andthen,combinedwithpredic
                  tedprecipitation ,alowflowforecastmethodwasestablishedandappliedtothewatershedabovetheShiguhydro
                  logicalstationoftheYangtzeRiver,andtherunoffsimulationandpredictionresearchwerecarriedoutatfive - day,
                  ten - day,andmonthlyscalesfrom2000to2012.TheresultsshowthattheGBEHMmodelhasgoodsimulationper
                  formanceondailyrunoffwithNash - Sutcliffeefficiencycoefficient (NSE)of0.94and0.91,andtherelativewater
                  balanceerror(WBE)of0.98% and3.9% inthecalibrationandvalidationperiods,respectively.However,the
                  simulatedrunoffduringdryseasonsislowerthantheobserved.AftertheARerrorcorrection ,thesimulationpass
                  ratehasincreasedto81% to96% inthecalibrationandvalidationperiods,respectively.Theforecastingpassrate
                  duringdryseasonsandseveredroughtsarelessthan80% and85%,respectively.AfterARerrorcorrection,the
                  forecastingpassrateshavebeenimprovedinto91% and97%,respectively.Thisstudyhasachievedhighprecision
                  forecastoflowflowatfive - day,ten - dayandmonthlyscales,significantlyimprovingtheforecastingaccuracydur
                  ingdroughtsanddryseasons.Theseresultshavepromisingapplicationsinengineering.
                  Keywords:runoffforecasting;lowflow;distributedhydrologicalmodel;real - timecorrection;theUpperYangtze
                  River


                                                                                    (责任编辑:韩 昆)









                                                                                                   5
                                                                                              —   1 4 7 —
   130   131   132   133   134   135   136   137   138   139   140