Page 131 - 2025年第56卷第7期
P. 131
todamagepatterns[J].ExperimentalThermalandFluidScience,2015,68:359 - 370.
[13] ITOY,TSUNODAA,KURISHITA Y,etal.Experimentalvisualizationofcryogenicbackflowvortexcavitation
withthermodynamiceffects[J].JournalofPropulsionandPower,2016,32(1):71 - 82.
[14] PELZPF,KEILT,GROSSTF.Thetransitionfrom sheettocloudcavitation[J].JournalofFluidMechanics,
2017,817:439 - 454.
[15] DULARM,BACHERTR.TheissueofStrouhalnumberdefinitionincavitatingflow[J].JournalofMechanical
Engineering,2009,55(11):666 - 674.
[16] CHENT,CHENH,LIANGW,etal.Experimentalinvestigationofliquidnitrogencavitatingflowsinconverging -
divergingnozzlewithspecialemphasisonthermaltransition[J].InternationalJournalofHeatandMassTransfer,
2019,132:618 - 630.
[17] CHENT,CHENH,HUANGB,etal.Thermaltransitionanditsevaluationofliquidhydrogencavitatingflowina
widerangeoffree - streamconditions[J].InternationalJournalofHeatandMassTransfer,2018,127:1277 - 1289.
[18] BRENNENCE.CavitationandBubbleDynamics[M].CambridgeUniversityPress,2013.
[19] RUGGERIRS,MOORERD.MethodforPredictionofPumpCavitationPerformanceforVariousLiquids,Liquid
Temperatures ,andRotativeSpeeds[M].NationalAeronauticsandSpaceAdministration,1969.
[20] AMBROSINIW.Assessmentofflowstabilityboundariesinaheatedchannelwithdifferentfluidsatsupercritical
pressure [J].AnnalsofNuclearEnergy,2011,38(2?3):615 - 627.
[21] PETKOVEKM,DULARM.Cavitationdynamicsinwateratelevatedtemperaturesandinliquidnitrogenatanul
trasonichorntip [J].UltrasonicsSonochemistry,2019,58:104652.
Visualizationstudyandthermodynamiceffectanalysisofunsteady
cavitationflowinmicrochannels
1
1
2
1
1
LIUKun,YANJianguo,GUOPengcheng,LIWenbo,ZHAOLi
(1.StateKeyLaboratoryofWaterEngineeringEcologyandEnvironmentinAridArea,Xi’anUniversityofTechnology,
Xi’an 710048,China;2.SchoolofEnergy&Architecture,Xi’anAeronauticalInstitute,Xi’an 710077,China)
Abstract:Inordertoanalyzetheinfluenceoftemperature,flowrateandpressureontheevolutionofunsteady
cavitation,andtoevaluatethethermodynamiceffectofcavitationflowquantitatively,cavitationexperimentswere
carriedoutinthetemperaturerangeof25 -65℃ byusinghigh - speedphotographicvisualizationmethods.
Unsteadycavitationflowimagedatawereobtained.Theresultsindicatethatasthetemperatureincreasesandthe
cavitationnumberdecreases ,thecharacteristicscaleofthecavitationareaincreasesandthedurationofcavitation
developmentbecomeslonger.Thecontinuousflowofthereturnjetpromotesfurtherdetachmentofthecloudcavita
tion,andthedetachmentandseparationprocessexhibitquasi - periodicity.Asthetemperatureincreases,the
cavityexhibitsalaterdetachmentandmoreviolentjetcollapsingjetphenomena.Themainfrequencyofoscillation
inthecloudcavitationandthedimensionlessStrouhalnumber (St)arecalculatedbyusingFFTtransformation,
provingthatthemaximumcharacteristiclengthofthecavityisthedominantfactorforthecloudsheddingoscillation
frequency.Cavitationmeanimageinformationindicatesthattemperatureistheprimaryfactordeterminingthevaria
tionincavitationintensity.Astemperaturerises ,theaveragecavitysizeinitiallyincreasesandthendecreasesdue
totheinhibitoryeffectofthermodynamiceffects.ThedimensionlessparameterCSPisusedtocharacterizetheinhib
itoryeffectofthermodynamiceffects.Beyondaspecifictemperature,thethermodynamiceffectsbecomemorepro
nounced,furtherinhibitingcavitationdevelopment.Asthecavitationnumberdecreases,thequasi - steadysheet
cavitationdistributiongraduallytransitionstoquasi - periodicsheddingcloudcavitation.
Keywords:cavitation;unsteadyflow;thermodynamiceffect;microchannels;visualization
(责任编辑:韩 昆)
— 9 5 7 —

