Page 131 - 2025年第56卷第7期
P. 131

todamagepatterns[J].ExperimentalThermalandFluidScience,2015,68:359 - 370.
                [13] ITOY,TSUNODAA,KURISHITA Y,etal.Experimentalvisualizationofcryogenicbackflowvortexcavitation
                       withthermodynamiceffects[J].JournalofPropulsionandPower,2016,32(1):71 - 82.
                [14] PELZPF,KEILT,GROSSTF.Thetransitionfrom sheettocloudcavitation[J].JournalofFluidMechanics,
                      2017,817:439 - 454.
                [15] DULARM,BACHERTR.TheissueofStrouhalnumberdefinitionincavitatingflow[J].JournalofMechanical
                       Engineering,2009,55(11):666 - 674.
                [16] CHENT,CHENH,LIANGW,etal.Experimentalinvestigationofliquidnitrogencavitatingflowsinconverging -
                       divergingnozzlewithspecialemphasisonthermaltransition[J].InternationalJournalofHeatandMassTransfer,
                      2019,132:618 - 630.
                [17] CHENT,CHENH,HUANGB,etal.Thermaltransitionanditsevaluationofliquidhydrogencavitatingflowina
                       widerangeoffree - streamconditions[J].InternationalJournalofHeatandMassTransfer,2018,127:1277 - 1289.
                [18] BRENNENCE.CavitationandBubbleDynamics[M].CambridgeUniversityPress,2013.
                [19] RUGGERIRS,MOORERD.MethodforPredictionofPumpCavitationPerformanceforVariousLiquids,Liquid
                       Temperatures ,andRotativeSpeeds[M].NationalAeronauticsandSpaceAdministration,1969.
                [20] AMBROSINIW.Assessmentofflowstabilityboundariesinaheatedchannelwithdifferentfluidsatsupercritical
                       pressure [J].AnnalsofNuclearEnergy,2011,38(2?3):615 - 627.
                [21] PETKOVEKM,DULARM.Cavitationdynamicsinwateratelevatedtemperaturesandinliquidnitrogenatanul
                       trasonichorntip [J].UltrasonicsSonochemistry,2019,58:104652.



                             Visualizationstudyandthermodynamiceffectanalysisofunsteady
                                             cavitationflowinmicrochannels

                                                                               1
                                                                    1
                                                                                          2
                                      1
                                                    1
                              LIUKun,YANJianguo,GUOPengcheng,LIWenbo,ZHAOLi
                       (1.StateKeyLaboratoryofWaterEngineeringEcologyandEnvironmentinAridArea,Xi’anUniversityofTechnology,
                       Xi’an 710048,China;2.SchoolofEnergy&Architecture,Xi’anAeronauticalInstitute,Xi’an 710077,China)
                  Abstract:Inordertoanalyzetheinfluenceoftemperature,flowrateandpressureontheevolutionofunsteady
                  cavitation,andtoevaluatethethermodynamiceffectofcavitationflowquantitatively,cavitationexperimentswere
                  carriedoutinthetemperaturerangeof25 -65℃ byusinghigh - speedphotographicvisualizationmethods.
                  Unsteadycavitationflowimagedatawereobtained.Theresultsindicatethatasthetemperatureincreasesandthe
                  cavitationnumberdecreases ,thecharacteristicscaleofthecavitationareaincreasesandthedurationofcavitation
                  developmentbecomeslonger.Thecontinuousflowofthereturnjetpromotesfurtherdetachmentofthecloudcavita
                  tion,andthedetachmentandseparationprocessexhibitquasi - periodicity.Asthetemperatureincreases,the
                  cavityexhibitsalaterdetachmentandmoreviolentjetcollapsingjetphenomena.Themainfrequencyofoscillation
                  inthecloudcavitationandthedimensionlessStrouhalnumber (St)arecalculatedbyusingFFTtransformation,
                  provingthatthemaximumcharacteristiclengthofthecavityisthedominantfactorforthecloudsheddingoscillation
                  frequency.Cavitationmeanimageinformationindicatesthattemperatureistheprimaryfactordeterminingthevaria
                  tionincavitationintensity.Astemperaturerises ,theaveragecavitysizeinitiallyincreasesandthendecreasesdue
                  totheinhibitoryeffectofthermodynamiceffects.ThedimensionlessparameterCSPisusedtocharacterizetheinhib
                  itoryeffectofthermodynamiceffects.Beyondaspecifictemperature,thethermodynamiceffectsbecomemorepro
                  nounced,furtherinhibitingcavitationdevelopment.Asthecavitationnumberdecreases,thequasi - steadysheet
                  cavitationdistributiongraduallytransitionstoquasi - periodicsheddingcloudcavitation.
                  Keywords:cavitation;unsteadyflow;thermodynamiceffect;microchannels;visualization


                                                                                    (责任编辑:韩 昆)





                                                                                                —  9 5 7 —
   126   127   128   129   130   131   132   133   134   135   136