Page 16 - 2025年第56卷第7期
P. 16

prediction using a state-of-the-art deep learning model[J]  Journal of Hydrology,2022,614:128599.
                                                                 .
               [ 3 ] CROCHEMORE L,RAMOS M,PAPPENBERGER F.  Bias correcting precipitation forecasts to improve the skill of
                      seasonal streamflow forecasts[J]  Hydrology and Earth System Sciences,2016,20(9):3601-3618.
                                              .
               [ 4 ] 马秋梅,桂绪,熊立华,等 .  气候变化对 HBV 水文模型参数敏感性和不确定性的影响[J]  水科学进展,
                                                                                               .
                      2024,35(4):556-568.
               [ 5 ] 谢平,霍竞群,桑燕芳,等 .  基于 ARMA 模型的水文序列相依变异分级方法及验证[J]  水利学报,2021,
                                                                                            .
                      52(7):793-806.
               [ 6 ] 周庆梓,何自立,吴磊,等 .  多源数据融合的深度学习径流预测模型[J]  水力发电学报,2023,42(5):
                                                                                 .
                      43-52.
                                                                             .
               [ 7 ] 刘攀,郑雅莲,谢康,等 .  水文水资源领域深度学习研究进展综述[J]  人民长江,2021,52(10):76-83.
               [ 8 ] GRANATA F, DI NUNNO F, DE MARINIS G.  Stacked machine learning algorithms and bidirectional long short-
                      term memory networks for multi-step ahead streamflow forecasting: A comparative study[J]  Journal of Hydrology,
                                                                                          .
                      2022,613:128431.
               [ 9 ] 李步,田富强,李钰坤,等 .  融合气象要素时空特征的深度学习水文模型[J]  水科学进展,2022,33(6):
                                                                                    .
                      904-913.
               [ 10] CAPPELLI F,TAURO F,APOLLONIO C,et al.  Feature importance measures for flood forecasting system design
                      [J]  Hydrological Sciences Journal,2024,69(4):438-455.
                         .
               [ 11] 余红玲,王晓玲,任炳昱,等 .  土石坝渗流性态分析的 IAO-XGBoost 集成学习模型与预测结果解释[J]  水利
                                                                                                      .
                      学报,2023,54(10):1195-1209.
               [ 12] YAO Z,WANG Z,WANG D,et al.  An ensemble CNN-LSTM and GRU adaptive weighting model based improved
                                                                                                   .
                      sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input[J]  Journal of
                      Hydrology,2023,625:129977.
               [ 13] TANG  C, ZHANG  Y, WU  F, et  al.   An  improved  CNN-BILSTM  model  for  power  load  prediction  in  uncertain
                                   .
                      power systems[J]  Energies,2024,17(10):2312.
               [ 14] 刘 源 , 纪 昌 明 , 马 皓 宇 , 等 .  基 于 集 合 Kalman 滤 波 的 中 长 期 径 流 预 报[J]  水 资 源 保 护 , 2024, 40(1):
                                                                                   .
                      93-99.
               [ 15] 熊怡,周建中,孙娜,等 .  基于自适应变分模态分解和长短期记忆网络的月径流预报[J]  水利学报,2023,
                                                                                            .
                      54(2):172-183,198.
               [ 16] 王丽萍,李宁宁,马皓宇,等 .  MIC-PCA 耦合算法在径流预报因子筛选中的应用[J]  中国农村水利水电,
                                                                                          .
                      2018(9):36-41,51.
               [ 17] WENXIN  X, JIE  C, CORZO  G, et  al.   Coupling  deep  learning  and  physically  based  hydrological  models  for
                                               .
                      monthly streamflow predictions[J]  Water Resources Research,2024,60(2):e2023WR035618.
               [ 18] LU P,LIN K,XU C,et al.  An integrated framework of input determination for ensemble forecasts of monthly estua⁃
                                         .
                      rine saltwater intrusion[J]  Journal of Hydrology,2021,598:126225.
               [ 19] THANH H V, BINH D V, KANTOUSH S A, et al.  Reconstructing daily discharge in a megadelta using machine
                      learning techniques[J]  Water Resources Research,2022,58(5):e2021WR031048.
                                       .
               [ 20] 熊怡,周建中,贾本军,等 .  基于随机森林遥相关因子选择的月径流预报[J]  水力发电学报,2022,41(3):
                                                                                  .
                      32-45.
                                                                                                          .
               [ 21] JIANG Q,LI W,FAN Z,et al.  Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland[J]
                      Journal of Hydrology,2021,595:125660.
               [ 22] XU J,MA Z,YAN S,et al.  Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipita⁃
                      tion products?A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation
                                              .
                      products over mainland China[J]  Journal of Hydrology,2022,605:127353.
               [ 23] LIAO S,LIU Z,LIU B,et al.  Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set
                      based on gradient-boosting regression trees[J]  Hydrology and Earth System Sciences,2020,24(5):2343-2363.
                                                        .
               [ 24] 董甲平,冶运涛,顾晶晶,等 .  遥感降水降尺度高精度校正及不确定性分析方法[J]  水利学报,2024,55
                                                                                         .
                      (2):226-237,252.
                                                                                      .
               [ 25] 吴业楠,钟平安,闫海滨,等 .  基于层次贝叶斯法的无资料地区洪水频率分析[J]  水电能源科学,2019,37
                — 842   —
   11   12   13   14   15   16   17   18   19   20   21