Page 16 - 2025年第56卷第7期
P. 16
prediction using a state-of-the-art deep learning model[J] Journal of Hydrology,2022,614:128599.
.
[ 3 ] CROCHEMORE L,RAMOS M,PAPPENBERGER F. Bias correcting precipitation forecasts to improve the skill of
seasonal streamflow forecasts[J] Hydrology and Earth System Sciences,2016,20(9):3601-3618.
.
[ 4 ] 马秋梅,桂绪,熊立华,等 . 气候变化对 HBV 水文模型参数敏感性和不确定性的影响[J] 水科学进展,
.
2024,35(4):556-568.
[ 5 ] 谢平,霍竞群,桑燕芳,等 . 基于 ARMA 模型的水文序列相依变异分级方法及验证[J] 水利学报,2021,
.
52(7):793-806.
[ 6 ] 周庆梓,何自立,吴磊,等 . 多源数据融合的深度学习径流预测模型[J] 水力发电学报,2023,42(5):
.
43-52.
.
[ 7 ] 刘攀,郑雅莲,谢康,等 . 水文水资源领域深度学习研究进展综述[J] 人民长江,2021,52(10):76-83.
[ 8 ] GRANATA F, DI NUNNO F, DE MARINIS G. Stacked machine learning algorithms and bidirectional long short-
term memory networks for multi-step ahead streamflow forecasting: A comparative study[J] Journal of Hydrology,
.
2022,613:128431.
[ 9 ] 李步,田富强,李钰坤,等 . 融合气象要素时空特征的深度学习水文模型[J] 水科学进展,2022,33(6):
.
904-913.
[ 10] CAPPELLI F,TAURO F,APOLLONIO C,et al. Feature importance measures for flood forecasting system design
[J] Hydrological Sciences Journal,2024,69(4):438-455.
.
[ 11] 余红玲,王晓玲,任炳昱,等 . 土石坝渗流性态分析的 IAO-XGBoost 集成学习模型与预测结果解释[J] 水利
.
学报,2023,54(10):1195-1209.
[ 12] YAO Z,WANG Z,WANG D,et al. An ensemble CNN-LSTM and GRU adaptive weighting model based improved
.
sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input[J] Journal of
Hydrology,2023,625:129977.
[ 13] TANG C, ZHANG Y, WU F, et al. An improved CNN-BILSTM model for power load prediction in uncertain
.
power systems[J] Energies,2024,17(10):2312.
[ 14] 刘 源 , 纪 昌 明 , 马 皓 宇 , 等 . 基 于 集 合 Kalman 滤 波 的 中 长 期 径 流 预 报[J] 水 资 源 保 护 , 2024, 40(1):
.
93-99.
[ 15] 熊怡,周建中,孙娜,等 . 基于自适应变分模态分解和长短期记忆网络的月径流预报[J] 水利学报,2023,
.
54(2):172-183,198.
[ 16] 王丽萍,李宁宁,马皓宇,等 . MIC-PCA 耦合算法在径流预报因子筛选中的应用[J] 中国农村水利水电,
.
2018(9):36-41,51.
[ 17] WENXIN X, JIE C, CORZO G, et al. Coupling deep learning and physically based hydrological models for
.
monthly streamflow predictions[J] Water Resources Research,2024,60(2):e2023WR035618.
[ 18] LU P,LIN K,XU C,et al. An integrated framework of input determination for ensemble forecasts of monthly estua⁃
.
rine saltwater intrusion[J] Journal of Hydrology,2021,598:126225.
[ 19] THANH H V, BINH D V, KANTOUSH S A, et al. Reconstructing daily discharge in a megadelta using machine
learning techniques[J] Water Resources Research,2022,58(5):e2021WR031048.
.
[ 20] 熊怡,周建中,贾本军,等 . 基于随机森林遥相关因子选择的月径流预报[J] 水力发电学报,2022,41(3):
.
32-45.
.
[ 21] JIANG Q,LI W,FAN Z,et al. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland[J]
Journal of Hydrology,2021,595:125660.
[ 22] XU J,MA Z,YAN S,et al. Do ERA5 and ERA5-land precipitation estimates outperform satellite-based precipita⁃
tion products?A comprehensive comparison between state-of-the-art model-based and satellite-based precipitation
.
products over mainland China[J] Journal of Hydrology,2022,605:127353.
[ 23] LIAO S,LIU Z,LIU B,et al. Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set
based on gradient-boosting regression trees[J] Hydrology and Earth System Sciences,2020,24(5):2343-2363.
.
[ 24] 董甲平,冶运涛,顾晶晶,等 . 遥感降水降尺度高精度校正及不确定性分析方法[J] 水利学报,2024,55
.
(2):226-237,252.
.
[ 25] 吴业楠,钟平安,闫海滨,等 . 基于层次贝叶斯法的无资料地区洪水频率分析[J] 水电能源科学,2019,37
— 842 —

