Page 74 - 水利学报2021年第52卷第5期
P. 74
/
[ 13] TURHAN C G,BILGE H S,IEEE . Recent Trends in Deep Generative Models:a Review[C]/International Con⁃
ference on Computer Science and Engineering,2018 .
[ 14] PAPAMAKARIOS G,NALISNICK E,JIMENEZ REZENDE D,et al . Normalizing Flows for Probabilistic Model⁃
ing and Inference[J/OL]. 2019,[2021-1-29] https://arxiv.org/abs/1912.02762/html .
.
[ 15] KOBYZEV I,PRINCE S J D,BRUBAKER M A . Normalizing Flows:An Introduction and Review of Current
Methods[Z]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020 .
[ 16] ZHANG T-F,TILKE P,DUPONT E,et al . Generating geologically realistic 3D reservoir facies models using
deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science,2019,16
(3):541-549 .
[ 17] BERGEN K J,JOHNSON P A,DE HOOP M V,et al . Machine learning for data-driven discovery in solid Earth
geoscience[J]. Science,2019,363(6433):1299 .
[ 18] PRABHAKARAN R,BRUNA P-O,BERTOTTI G,et al . An automated fracture trace detection technique using
the complex shearlet transform[J]. Solid Earth,2019,10(6):2137-2166 .
/
[ 19] PAPAMAKARIOS G,PAVLAKOU T,MURRAY I . Masked Autoregressive Flow for Density Estimation[C]/Ad⁃
vances in Neural Information Processing Systems,2017 .
[ 20] KINGMA D,SALIMANS T,JOZEFOWICZ R,et al . Improved Variational Inference with Inverse Autoregressive
/
Flow[C]/Advances in Neural Information Processing Systems,2016 .
[ 21] PAPAMAKARIOS G . Neural Density Estimation and Likelihood-free Inference[D]. Edinburgh:University of
Edinburgh,2019 .
/
[ 22] KINGMA D P,DHARIWAL P . Glow:Generative Flow with Invertible 1 x 1 Convolutions[C]/Advances in Neu⁃
ral Information Processing Systems,2018 .
[ 23] PRENGER R,VALLE R,CATANZARO B . Waveglow:A Flow-based Generative Network for Speech Synthesis
[C]/proceedings of the International Conference on Acoustics Speech and Signal Processing,2019 .
/
/
[ 24] TRAN D,VAFA K,AGRAWAL K K,et al . Discrete Flows:Invertible Generative Models of Discrete Data[C]/
Advances in Neural Information Processing Systems,2019 .
[ 25] RODRIGUEZ A,LAIO A . Clustering by fast search and find of density peaks[J]. Science,2014,344(6191):
1492-1496 .
[ 26] 陈叶旺,申莲莲,钟才明,等 . 密度峰值聚类算法综述[J]. 计算机研究与发展,2020,57(2):378-394 .
[ 27] 岳攀,钟登华,吴含,等 . 基于 LHS 的坝基岩体三维裂隙网络模拟[J]. 水力发电学报,2016,35(10):
93-102 .
[ 28] 岳攀 . 基于不确定性分析的水电工程地质构造建模理论与方法研究[D]. 天津:天津大学,2016 .
/
[ 29] GERMAIN M,GREGOR K,MURRAY I,et al . MADE:Masked Autoencoder for Distribution Estimation[C]/In⁃
ternational Conference on Machine Learning,2015 .
[ 30] DILOKTHANAKUL N,MEDIANO P A M,GARNELO M,et al . Deep Unsupervised Clustering with Gaussian
.
.
Mixture Variational Autoencoders[J/OL] 2017,[2021-1-29] https://arxiv.org/abs/1611.02648/html .
[ 31] IZMAILOV P,KIRICHENKO P,FINZI M, et al . Semi-Supervised Learning with Normalizing Flows[J/OL] .
.
2019,[2021-1-29] https://arxiv.org/abs/1912.13025/html .
/
[ 32] NALISNICK E,HERTEL L,SMYTH P . Approximate inference for deep latent gaussian mixtures[C]/Proceed⁃
ings of the NIPS . Barcelona,2016 .
[ 33] KENNEDY J,EBERHART R C . Particle swarm optimization[C]/International Conference on Networks,2002 .
/
[ 34] SHANLEY R J,MAHTAB M A . Delineation and analysis of clusters in orientation data[J]. Journal of the Inter⁃
national Association for Mathematical Geology,1976,8(1):9-23 .
/
[ 35] ARJOVSKY M,CHINTALA S,BOTTOU L . Wasserstein Generative Adversarial Networks[C]/International
Conference on Machine Learning,2017 .
[ 36] XU B,PANG R,ZHOU Y,et al . Verification of stochastic seismic analysis method and seismic performance
evaluation based on multi-indices for high CFRDs[J]. Engineering Geology,2020,264:105412 .
[ 37] 钟 登 华 ,关 涛 ,任 炳 昱 . 基 于 改 进 重 抽 样 法 的 高 拱 坝 施 工 进 度 仿 真 研 究[J]. 水 利 学 报 ,2016,47(4):
473-482 .
[ 38] ZHANG Y,YUE P,ZHANG G,et al . Augmented reality mapping of rock mass discontinuities and rockfall sus⁃
ceptibility based on unmanned aerial vehicle photogrammetry[J]. Remote Sensing,2019,11(11):1-34 .
— 576 —