Page 8 - 2024年第55卷第9期
P. 8

1,2,…,r,运算结束。
                  ⑥ 输出各子集 C = {C,C,…,C}、属于各子集的样本 y ,y ,…,y(o为属于该类的样本
                                                                             C i
                                                                         C i
                                                                                      C i
                                                                             2
                                                                                      o
                                                                         1
                                          2
                                      1
                                                  r
                                    p + 1
              数)以及各子集的均值 Z = {z,z,…,z}。
                                    j     1  2       r
                                                                                            p + 1
                  (4)时空特征空间重构。得到的各子集 C = {C,C,…,C}以及各子集的均值Z 并不是所求的
                                                           1    2       r                   j
              特征空间,而是降维后数据集的特征空间。LLE算法中设定高维空间和低维空间局部线性关系保持不
              变,高维空间中的样本x及其周围样本的线性关系,与其在低维空间中的映射点y及其周围对应样本
                                    i                                                    i
              的局部线性关系相同。因此,在低维空间中属于同一个子集的样本,在高维空间中也具有相似性。
                  即,在低维空间中的各子集 C = {C,C,…,C}中的样本,在高维空间中,也分别属于同一子
                                                  1   2       r
                                                                       1
                                                                                  D
              集 B = {B,B,…,B}。在高维空间中求各子集的均值 S =                          ∑  x R(x B),为高维空间中
                      1   2        r                                j        i       i    j
                                                                       B j
              各类的聚类中心,即为属于该类样本的动态时空分布特征。
                  ( 5)降雨时空动态特征识别及匹配。对于即将到来的降雨,通过以上算法投影到时空特征空间中,
              按照特征空间中距离最小原则,识别出与历史降雨时空特征空间中距离最小的样本,即与当前降雨时
              空特征最为相似的历史降雨过程。该识别出的历史降雨样本对应的洪水过程,就是当前预报降雨的洪
              水预报结果,如式( 8)所示。
                                             min(d (Y;Y)) =min( Y- Y )                                  (8)
                                                                         n 2
                                                  2D
                                                          n
                                                                      l
                                                      l
              式中:Y 为待识别样本的特征矩阵;Y 为历史降雨样本的特征矩阵。
                                                 n
                      l
                  ( 6)洪水预报结果评估。为了评价识别匹配度,本文从预报和实测结果洪峰流量、峰现时间、洪
              水过程中各时刻流量预报误差以及洪水过程形态等方面进行评估。具体包括:
                  ① 洪峰流量预报相对误差 Δ Q (%)。
                                             m
                                                       Q m实测  - Q m预测
                                                Δ Q =              × 100 %                              (9)
                                                   m
                                                          Q m实测
                  ② 洪峰出现时间误差 Δ T(h)。
                                         m
                                                   Δ T = T m实测  - T m预测                                (10)
                                                      m
                                                                                 3
                  ③ 各时刻流量之间的均方根误差 RMSE(RootMeanSquaredError)(m ?s)。

                                                            1  n      2
                                                  RMSE =     ∑(y - f)                                  (11)
                                                         槡        i  i
                                                            n i = 1
              式中 f和 y分别为模型预测流量和实测流量。
                   i
                        i
                                                                 2
                  ④ 预测数据与模拟数据曲线的相似程度决定系数 R,以评估实测和预报洪水过程线的拟合程度。
               2
              R的计算公式如式(12)所示。
                                                           ∑  (y -f ) 2
                                                                    i
                                                                i
                                                   2
                                                  R =1-     i                                          (12)
                                                          ∑   (y - 珋  2
                                                                   y)
                                                                i
                                                                    i
                                                            i
              式中 f和 y分别为模型预测流量和实测流量。
                   i    i
              3 结果分析
                  以中平小流域 115场历史降雨为样本,随机选出其中 110场作为学习样本,将另外 5场降雨作为
              待识别样本。首先提取降雨的时空分布特征。经分析,中平小流域历史 110场降雨在时空分布上可以
              分为两种类型:①降雨中心在南部上游山丘地区,该类型降雨占总样本的 52%;②降雨中心在北部下
              游平坦地区,该类型降雨占总样本的 48%。识别时,识别样本的前 1?4历时、前 1?3历时和前 1?2历时
              降雨过程,找到对应的历史降雨样本。再以完整的降雨过程为对象进行识别,找到与完整识别样本对
              应的历史降雨样本。试验表明,基于前 1?4历时降雨过程识别结果与基于完整的降雨过程识别结果有
                                                                                                   0
                                                                                              —   1 1 3 —
   3   4   5   6   7   8   9   10   11   12   13