Page 71 - 2025年第56卷第7期
P. 71
报,2017,37(12):3437-3448.
.
[ 21] 赵小伟 . 基于 Microsoft Azure 云计算的梯级水库优化调度研究[D] 宜昌:三峡大学,2015.
[ 22] 刁艳芳,王本德 . 基于不同风险源组合的水库防洪预报调度方式风险分析[J] 中国科学(技术科学),2010,
.
40(10):1140-1147.
[ 23] 刁 艳 芳 , 王 本 德 , 刘 冀 . 基 于 最 大 熵 原 理 方 法 的 洪 水 预 报 误 差 分 布 研 究[J] 水 利 学 报 , 2007, 38(5):
.
591-595.
[ 24] 刘鹏 . 基于改进拉丁超立方重要抽样方法的结构可靠性分析[D] 广州:暨南大学,2017.
.
[ 25] MOHAMMADI-BALANI A,DEHGHAN N M,AZAR A,et al. Golden eagle optimizer:A nature-inspired meta⁃
.
heuristic algorithm[J] Computers & Industrial Engineering,2021,152:107050.
[ 26] 张彬,熊传兵 . 基于体素下采样和关键点提取的点云自动配准[J] 激光与光电子学进展,2020,57(4):
.
109-117.
[ 27] 袁 华 , 庞 建 铿 , 莫 建 文 . 基 于 体 素 化 网 格 下 采 样 的 点 云 简 化 算 法 研 究[J] 电 视 技 术 , 2015, 39(17):
.
43-47.
[ 28] 冯杰,冻芳芳,顾春新,等 . 变化条件下史灌河水文特性分析[J] 水电能源科学,2008(3):17-20.
.
[ 29] 李大海,艾志刚,王振东 . 基于全组合策略的多目标阴阳对算法[J] 计算机工程与应用,2021,57(22):
.
110-124.
A multi-objective risk operation model for real-time flood control of reservoir
groups based on cloud computing
1,2 1 3 1 1
CHEN Juan ,ZHANG Lu ,SUN Feifei ,DENG Ruxia ,ZHONG Pingan
(1. College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;2. Institute of Water Transfer Engineering,
Hohai University,Nanjing 210098,China;3. Ningbo Water Conservancy & Hydropower Planning and
Design Institute Co.,Ltd,Ningbo 315000,China)
Abstract:Real-time flood control operation of a multi-reservoir system is a risky operation influenced by many
uncertain factors. This paper considers the uncertainty of hydrological forecast errors and establishes a multi-
objective risk operation model of a multi-reservoir system with the objectives of minimizing the highest reservoir water
level and minimizing the maximum discharge in the downstream section. Using the multi-objective golden eagle opti⁃
mization algorithm (MOGEO),the "curse of dimensionality" problem is addressed from four perspectives:intelligent
optimization algorithms,risk factor simulation,parallel computing,and cloud computing. And then,an improved
point cloud voxel down sampling method is proposed to extract the optimal operation scheme according to the spatial
distribution of the set of non-inferior solutions. The Shiguanhe river basin is selected for case study. The results show
that MOGEO reduces the calculation time of the model from 1,542 s of Non-Dominated Sorting Genetic Algorithm Ⅲ
to 830 s. The improved Latin hypercube sampling method can ensure the sampling accuracy while reducing the calcu⁃
lation time by 2/3. The calculation time using the cloud distributed cluster is 113 s,which is 1/6 of that on a single
cloud server with 12-core parallel processing and 1/30 of the time for serial computation.
Keywords:multi-reservoir system;real-time flood control operation;uncertainty;cloud computing;distributed
cluster
(责任编辑:耿庆斋)
— 897 —

