Page 102 - 2022年第53卷第1期
P. 102
622-632 .
[ 10] LEECH C A . Water Movement in Unsaturated Concrete:Theory,Experiments,Models[D]. School of Engineer⁃
ing,The University of Queensland,2003 .
[ 11] CHANG H,JIN Z,ZHAO T,et al . Capillary suction induced water absorption and chloride transport in non-sat⁃
urated concrete:The influence of humidity,mineral admixtures and sulfate ions[J]. Construction and Building
Materials,2020,236:117581 .
[ 12] BOGAS J A,CARRICO A,PONTES A . Influence of cracking on the capillary absorption and carbonation of
structural lightweight aggregate concrete[J]. Cement and Concrete Composites,2019,104:103382 .
[ 13] BAO J,WANG L . Capillary imbibition of water in discrete planar cracks[J]. Construction and Building Materi⁃
als,2017,146:381-392 .
[ 14] ABD A E,TAMAN M,KICHANOV S E,et al . Implementation of capillary penetration coefficient on water sorp⁃
tivity for porous building materials:An experimental study[J]. Construction and Building Materials,2021,298:
123758 .
[ 15] 娄亚东 . 碾压混凝土层面处理对层间结合性能影响研究[D]. 杭州:浙江大学,2015 .
[ 16] LIANG M,FENG K,HE C,et al . A meso-scale model toward concrete water permeability regarding aggregate
permeability[J]. Construction and Building Materials,2020,261:120547 .
[ 17] LI X,XU Q,CHEN S . An experimental and numerical study on water permeability of concrete[J]. Construction
and Building Materials,2016,105:503-510 .
[ 18] ABYANEH S D,WONG H S,BUENDELD N R . Simulating the effect of microcracks on the diffusivity and per⁃
meability of concrete using a three-dimensional model[J] . Computational Materials Science,2016,119:
130-143 .
[ 19] RUAN X,LI Y,ZHOU X,et al . Simulation method of concrete chloride ingress with mesoscopic cellular automa⁃
ta[J]. Construction and Building Materials,2020,249:118778 .
[ 20] MA H,WU Z,ZHANG J,et al . Uniaxial compressive properties of ecological concrete:Experimental and
three-dimensional(3D)mesoscopic investigation[J]. Construction and Building Materials,2021,278:121034 .
[ 21] 朱岳明,黄文雄 . 碾压混凝土及碾压混凝土坝的渗流特性研究[J]. 水利水电技术,1995(12):49-57 .
[ 22] Standard Test Method for Measurement of Rate of Absorption of water by Hydraulic Cement Concretes ASTM
C1585-13[S]. America:American Society Testing Materials,2013 .
[ 23] HALL C . Water sorptivity of mortars and concrete-a review[J] . Magazine of Concrete Research,1989,41
(147):51-61 .
[ 24] 杨林 . 非饱和混凝土水分与氯离子传输行为研究[D]. 南京:东南大学,2017 .
[ 25] 王宁 . 氯离子侵蚀环境下橡胶混凝土的劣化性能研究[D]. 天津:天津大学,2020 .
[ 26] HONG S,QIN S,YAO W,et al . Visualized tracing of capillary absorption process in cementitious material
based on X ray computed tomography[J]. Cement and Concrete Composites,2020,107:103487 .
[ 27] GUMMERSON R,HALL C,HOFF W,et al . Unsaturated water flow within porous materials observed by NMR
imaging[J]. Nature,1979,281:56-57 .
[ 28] LOCKINGTON D,PARLANGE J Y,DUX P . Sorptivity and estimation of water penetration into unsaturated con⁃
crete[J]. Materials and Structures,1999,32(5):342-347 .
[ 29] 中华人民共和国住房和城乡建设部 . 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082 -2009
[S]. 北京:中国建筑工业出版社,2009 .
[ 30] 陈胜平 . 非饱和混凝土氯离子运输机理研究[D]. 南宁:广西大学,2015 .
[ 31] 金浏,李秀荣,杜修力,等 . GFRP 增强混凝土圆柱轴压强度尺寸效应:细观分析[J]. 水利学报,2019,50
(4):409-419 .
[ 32] LI D,LI L Y,WANG X,et al . A double-porosity model for water flow in unsaturated concrete[J]. Applied
Mathematical Modelling,2018,53:510-522 .
[ 33] 王从锋,张培文 . 观音港电排站三维渗流数值分析[J]. 水力发电学报,2009,28(2):84-88 .
(下转第 108 页)
— 97 —