Page 67 - 2022年第53卷第3期
P. 67

[ 9 ] 梁浩,黄生志,孟二浩,等 . 基于多种混合模型的径流预测研究[J]. 水利学报,2020,51(1):112-125 .
                [ 10] XING Z,QU R,ZHAO Y,et al . Identifying the release history of a groundwater contaminant source based on an
                       ensemble surrogate model[J]. Journal of Hydrology,2019,572:501-516 .
                [ 11] CHEN M,IZADY A,ABDALLA O A,et al . A surrogate-based sensitivity quantification and Bayesian inversion
                       of a regional groundwater flow model[J]. Journal of Hydrology,2018:826-837 .
                [ 12] YIN H,FANG H,WEN G,et al . On the ensemble of metamodels with multiple regional optimized weight factors
                      [J]. Structural and Multidisciplinary Optimization,2018,58(1):245-263 .
                [ 13] GOEL T,HAFTKA R T,SHYY W,et al . Ensemble of surrogates[J]. Structural and Multidisciplinary Optimiza⁃
                       tion,2007,33(3):199-216 .
                [ 14] CHENG K,LU Z . Structural reliability analysis based on ensemble learning of surrogate models[J]. Structural
                       Safety,2020,83:1-12 .
                [ 15] VIANA F A C,HAFTKA R T,STEFFEN V . Multiple surrogates:how cross-validation errors help us to obtain
                       the best predictor[J]. Structural and Multidisciplinary Optimization,2009,39:439-457 .
                [ 16] CHRISTELIS V,KOPSIAFTIS G,MANTOGLOU A . Performance comparison of multiple and single surrogate
                       models for pumping optimization of coastal aquifers[J]. Hydrological sciences journal,2019,64(3):336-349 .
                [ 17] YE Y,WANG Z,ZHANG X . An optimal pointwise weighted ensemble of surrogates based on minimization of lo⁃
                       cal mean square error[J]. Structural and Multidisciplinary Optimization,2020,62(4):529-542 .
                [ 18] WANG H,LU W,CHANG Z . Simultaneous identification of groundwater contamination source and aquifer pa⁃
                       rameters with a new weighted-average wavelet variable-threshold denoising method[J]. Environmental science
                       and pollution research international,2021,28(8):1-16 .
                [ 19] LIU B,XIE L . Reliability analysis of structures by iterative improved ensemble of surrogate Method[J]. Shock
                       and Vibration,2019,2019:1-13 .
                [ 20] LALOY E,VRUGT J A . High-dimensional posterior exploration of hydrologic models using multiple-try DREAM
                      (ZS)and high-performance computing[J]. Water Resources Research,2012,50(3):1-18 .
                [ 21] 张将伟,卢文喜,曲延光,等 . 基于 Monte Carlo 方法的地表水地下水耦合模拟模型不确定分析[J]. 水利学
                       报,2018,49(10):1254-1264 .
                [ 22] HAN F,ZHENG Y . Joint analysis of input and parametric uncertainties in watershed water quality modeling:a
                       formal Bayesian approach[J]. Advances in Water Resources,2018,116:77-94 .
                [ 23] GUPTA A,GOVINDARAJU R S . Propagation of structural uncertainty in watershed hydrologic models[J]. Jour⁃
                       nal of Hydrology,2019,575:66-81 .
                [ 24] PAN Y,ZENG X,XU H,et al . Assessing human health risk of groundwater DNAPL contamination by quantify⁃
                       ing the model structure uncertainty[J]. Journal of Hydrology,2020,584:1-16 .
                [ 25] 程正飞,王晓玲,吕鹏,等 . 基于 VOF 法的碾压混凝土坝自由渗流场数值模拟[J]. 水利学报,2015,46
                      (5):558-566 .
                [ 26] 顾文龙,卢文喜,张宇,等 . 基于贝叶斯推理与改进的 MCMC 方法反演地下水污染源释放历史[J]. 水利学
                       报,2016,47(6):772-779 .
                [ 27] 贺玉琪,王栋,王远坤 . BRR-SVR 月降水量预测优化模型[J]. 水利学报,2019,50(12):1529-1537 .
                [ 28] SIMPSON T W,MAUERY T M,KORTE J J,et al . Kriging models for global approximation in simulation-based
                       multidisciplinary design optimization[J]. AIAA Journal,2001,39:2233-2241 .
                [ 29] FRIEDMAN J H . Multivariate adaptive regression splines(with discussion)[J]. The Annals of Statistics,1991,
                       19(1):1-67 .
                [ 30] VRUGT J A,BRAAK C,DIKS C,et al . Accelerating Markov Chain Monte Carlo Simulation by differential evolu⁃
                       tion with self-adaptive randomized subspace sampling[J]. International Journal of Nonlinear Sciences & Numeri⁃
                       cal Simulation,2009,10(3):273-290 .
                [ 31] GELMAN A,RUBIN D B . Inference from iterative simulation using multiple sequences[J]. Statistical Science .
                       1992,7(4):457-472 .

                                                                                          (下转第 324 页)


                                                                                               — 315  —
   62   63   64   65   66   67   68   69   70   71   72