Page 69 - 2022年第53卷第4期
P. 69
[ 32] PAN H,YUAN Y . A default method to specify skeletons for Bayesian model averaging continual reassessment
method for phase I clinical trials[J]. Stat Med,2017,36(2):266-279 .
[ 33] 霍文博,李致家,李巧玲 . 半湿润流域水文模型比较与集合预报[J]. 湖泊科学,2017,29(6):1491-1501 .
[ 34] RAFTERY A E,GNEITING T,BALABDAOUI F,et al . Using bayesian model averaging to calibrate forecast en⁃
sembles[J]. Monthly Weather Review,2005,133(5):1155-1174 .
.
[ 35] HAMMERSLEY J M,HANDSCOMB D C . Monte Carlo Methods[M] London:Methuen,1975 .
[ 36] MORIASI D N,ARNOLD J G,VAN LIEW M W,et al. Model evaluation guidelines for systematic quantification
of accuracy in watershed simulations[J]. Transactions of the ASABE,2007,50(3):885-900 .
[ 37] OUMA Y O,OWITI T,KIPKORIR E,et al. Multitemporal comparative analysis of TRMM-3B42 satellite-esti⁃
mated rainfall with surface gauge data at basin scales:daily,decadal and monthly evaluations[J]. International
Journal of Remote Sensing,2012,33(24):7662-7684 .
[ 38] ZHANG T,CHEN Y . Analysis of dynamic spatiotemporal changes in actual evapotranspiration and its associated
factors in the Pearl River Basin based on mod16[J]. Water,2017,9(11):832-850 .
[ 39] BU-DA S,JIAN Z,YAN-JUN W,et al . Spatial and temporal variation of actual evapotranspiration in china un⁃
der the 1.5℃ and 2.0℃ global warming scenarios[J] . Chinese Journal of Agrometeorology,2018,39(5):
293-303 .
[ 40] GAO W,WANG Z,HUANG G . Spatiotemporal variability of actual evapotranspiration and the dominant climatic
factors in the Pearl River Basin,China[J]. Atmosphere,2019,10(6):340-360 .
[ 41] HE J,YANG K,TANG W,et al . The first high-resolution meteorological forcing dataset for land process studies
over China[J]. Scientific Data,2020,7(1):25 .
[ 42] YANG K,HE J,TANG W,et al. On downward shortwave and longwave radiations over high altitude regions:Ob⁃
servation and modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology,2010,150(1):38-46 .
[ 43] LIU X,CHEN X,LI R,et al . Water-use efficiency of an old-growth forest in lower subtropical China[J]. Rep,
2017,7(1):1-10 .
[ 44] WAHR J,SWENSON S,ZLOTNICKI V,et al . Time-variable gravity from GRACE:First results[J]. Geophysi⁃
cal Research Letters,2004,31(11):L11501 .
[ 45] SAKUMURA C,BETTADPUR S,BRUINSMA S . Ensemble prediction and intercomparison analysis of GRACE
time-variable gravity field models[J]. Geophysical Research Letters,2014,41(5):1389-1397 .
[ 46] RAJAGOPALAN B,LALL U . Ak-nearest-neighbor simulator for daily precipitation and other weather variables
[J]. Water Resources Research,1999,35(10):3089-3101 .
[ 47] DEE D P,UPPALA S M,SIMMONS A J,et al . The ERA-Interim reanalysis:configuration and performance of
the data assimilation system[J] . Quarterly Journal of the Royal Meteorological Society,2011,137(656):
553-597 .
[ 48] RODELL M,HOUSER P R,JAMBOR U,et al . the global land data assimilation system[J]. Bulletin of the
American Meteorological Society,2004,85(3):381-394 .
[ 49] ZHONG Y,ZHONG M,MAO Y,et al . Evaluation of evapotranspiration for exorheic catchments of china during
the GRACE Era:From a water balance perspective[J]. Remote Sensing,2020,12(3):1-23 .
[ 50] 郑江禹,张强,史培军,等 . 珠江流域多尺度极端降水时空特征及影响因子研究[J]. 地理科学,2017,37
(2):283-291 .
[ 51] 涂新军,陈晓宏,赵勇,等 . 变化环境下东江流域水文干旱特征及缺水响应[J]. 水科学进展,2016,27
(6):810-821 .
[ 52] ZHOU G,WEI X,LUO Y,et al . Forest recovery and river discharge at the regional scale of Guangdong Prov⁃
ince,China[J]. Water Resources Research,2010,46:W09503 .
[ 53] TIAN W,LIU X,WANG K,et al . Estimation of reservoir evaporation losses for China[J]. Journal of Hydrology,
2021(596):126142 .
[ 54] KANG S,ELTAHIR E A B . North China Plain threatened by deadly heatwaves due to climate change and irriga⁃
tion[J]. Nat Commun,2018,9(1):2894 .
— 443 —