Page 75 - 2022年第53卷第8期
P. 75

[11] CHENY,ZHANGS,ZHANGW,etal.Multifactorspatio - temporalcorrelationmodelbasedonacombinationof
                       convolutionalneuralnetworkandlongshort - term memoryneuralnetworkforwindspeedforecasting[J].Energy
                       ConversionandManagement ,2019,185:783 - 799.
                [12] QINGX,NIUY.Hourlyday - aheadsolarirradiancepredictionusingweatherforecastsbyLSTM[J].Energy,
                      2018,148:461 - 468.
                [13] 张震,李孟洲,李浩方,等.基于 VMD - LSTM- MLR的短期电力负荷预测[J].水电能源科学,2021,39
                       (10):208 - 212.
                [14] VALIPOURM,BANIHABIBM E,BEHBAHANISM R.ComparisonoftheARMA,ARIMA,andtheautore
                       gressiveartificialneuralnetworkmodelsinforecastingthemonthlyinflowofDezDamReservoir [J].JournalofHy
                       drology,2013,476:433 - 441.
                [15] 张楠,夏自强,江红.基 于 多 因 子 量 化 指 标 的 支 持 向 量 机 径 流 预 测 [J].水 利 学 报,2010,41(11):
                      1318 - 1324.
                [16] 曾杰,张华.基于最小二乘支持向量机的风速预测模型[J].电网技术,2009,33(18):144 - 147.
                [17] 武小梅,张琦,田明正.基于 VMD - SE和优化支持向量机的光伏预测方法 [J].电力科学与工程,2017,
                      33(9):29 - 36.
                [18] 周尚臖玺,马立新.基于入侵杂草优化算法的支持向量机负荷预测[J].电力科学与工程,2017,33(2):
                      35 - 40.
                [19] BOUCHERM A,QUILTYJ,ADAMOWSKIJ.Dataassimilationforstreamflowforecastingusingextremelearning
                       machinesandmultilayerperceptrons [J].WaterResourcesResearch,2020,56(6):e2019WR026226.
                [20] PIOTROWSKIAP,NAPIORKOWSKIJJ.Product - Unitsneuralnetworksforcatchmentrunoffforecasting[J].
                       AdvancesinWaterResources,2012,49:97 - 113.
                [21] 张亚刚,赵媛,王增平.基于 Lorenz扰动分布和 VMD的神经网络风速预测研究 [J].华北电力大学学报
                       (自然科学版),2019,46(4):8 - 15.
                [22] JIANGH,DONGY,WANGJ,etal.Intelligentoptimizationmodelsbasedonhard - ridgepenaltyandRBFfor
                       forecastingglobalsolarradiation [J].EnergyConversionandManagement,2015,95:42 - 58.
                [23] TALAATM,FARAHATM A,MANSOUR N,etal.Loadforecastingbasedongrasshopperoptimizationanda
                       multilayerfeed - forwardneuralnetworkusingregressiveapproach[J].Energy,2020,196:117087.
                [24] LECUNY,BENGIOY,HINTONG.Deeplearning[J].Nature,2015,521(7553):436 - 444.
                [25] LVN,LIANGX,CHENC,etal.AlongShort - Termmemorycyclicmodelwithmutualinformationforhydrology
                       forecasting:AcasestudyintheXixianbasin[J].AdvancesinWaterResources,2020,141:103622.
                [26] WANG J,LIY.Multi - stepaheadwindspeedpredictionbasedonoptimalfeatureextraction,longshortterm
                       memoryneuralnetworkanderrorcorrectionstrategy[J].AppliedEnergy,2018,230:429 - 443.
                [27] SONGCM.Dataconstructionmethodologyforconvolutionneuralnetworkbaseddailyrunoffpredictionandassess
                       mentofitsapplicability[J].JournalofHydrology,2022,605:127324.
                [28] GHIMIRES,DEOR C,RAJN,etal.Deepsolarradiationforecastingwithconvolutionalneuralnetworkand
                       longshort - term memorynetworkalgorithms [J].AppliedEnergy,2019,253:113541.
                [29] 傅新忠,冯利华,陈闻晨.ARIMA与 ANN组合预测模型在中长期径流预报中的应用[J].水资源与水工程
                       学报,2009,20(5):105 - 109.
                [30] ZUOG,LUOJ,WANGN,etal.Decompositionensemblemodelbasedonvariationalmodedecompositionand
                       longshort - term memoryforstreamflowforecasting[J].JournalofHydrology,2020,585:124776.
                [31] 包苑村,解建仓,罗军刚.基于 VMD - CNN - LSTM 模 型 的 渭 河 流 域 月 径 流 预 测 [J].西 安 理 工 大 学 学 报,
                      2021,37(1):1 - 8.
                [32] KHOSRAVIA,NAHAVANDIS,CREIGHTOND,etal.Lowerupperboundestimationmethodforconstruction
                       ofneuralnetwork - basedpredictionintervals [J].IEEETransactionsonNeuralNetworks,2011,22(3):337 - 346.
                [33] 王斌,张洪波,辛琛,等.基于贝叶斯模型加权平均法的径流序列高频分量预测研究[J].水力发电学报,
                      2016,35(5):75 - 83.
                [34] 黄亚,易灵,肖伟华,等.基于高斯过程回归模型的径流短期预测研究[J].水力发电,2020,46(12):
                      9 - 12.

                —  9 6  —
                     2
   70   71   72   73   74   75   76   77   78   79   80