Page 76 - 2022年第53卷第8期
P. 76

[35] 冯平,商颂,李新.基于分位数回归的滦河流域降水及径流变化特性[J].水力发电学报,2016,35(2):
                      28 - 36.
                [36] ZHANGZ,YEL,QINH,etal.Windspeedpredictionmethodusingsharedweightlongshort - termmemorynet
                       workandgaussianprocessregression[J].AppliedEnergy,2019,247:270 - 284.
                [37] HEF,ZHOUJ,FENGZ,etal.Ahybridshort - termloadforecastingmodelbasedonvariationalmodedecompo
                       sitionandlongshort - term memorynetworksconsideringrelevantfactorswithBayesianoptimizationalgorithm[J].
                       AppliedEnergy,2019,237:103 - 116.
                [38] 金俊?,武鹏,董祥祥,等.基于 RF - GRU风速预测的风电 MPPT控制[J].传感器与微系统,2021,40
                       (5):38 - 41.
                [39] CHENT,GUESTRINC.XGBoost:Ascalabletreeboostingsystem[C].AssocCompMachinery,2016.785 - 794.



                              Aprobabilisticforecastingframeworkoftimeseriesvariablesfor
                                          wind - solar - hydropowerhybridsystems

                                                                                      1,2
                                                                       3
                                                1,2
                                                            1,2
                                ZHANGZhendong ,LUOBin ,QINHui,TANGHaihua ,
                                                                        1,2
                                                         1,2
                                               ZHOUChao ,FENGKuaile
                              (1.ChangjiangSurvey,Planning,DesignandResearchCo.,Ltd,Wuhan 430010,China;
                      2.Internet +SmartWaterConservancyKeyLaboratory,ChangjiangWaterResourcesCommittee,Wuhan 430010,China;
                      3.SchoolofCivilandHydraulicEngineering,HuazhongUniversityofScienceandTechnology,Wuhan 430074,China)
                  Abstract:Thereal - timedispatchofwind - solar - hydropower(WSH)hybridsystemisaffectedbytheuncertainty
                  oftime - seriesvariablessuchaswindspeed,solarradiationintensity,runoff,andpowerload.Howtoaccurately
                  forecastthesevariablesandquantifytheuncertaintyisthekeyproblemfacedbytheWSHhybridsystem.Inorderto
                  solvetheproblem ,aprobabilisticforecastingframeworkfortimeseriesvariablesbasedonadeeplearningmodelis
                  proposedbythisstudy.First ,thefeatureinputisminedfromthetimeseriesdataandthecorrelationcoefficientis
                  usedtoselectthegeneratedfeatures.Then ,basedondeeplearningmodelandGaussianprocessregression,the
                  timeseriesvariableprobabilisticforecastingmodelisconstructed,andthefeaturecombinationoptimizationandhy
                  perparameteroptimizationarerealizedthroughthe0 - 1planningideaandtheBayesianoptimizationalgorithm re
                  spectively.Theforecastingmodeliscomprehensivelyevaluatedfrom threeaspects: deterministicforecasting,
                  probabilisticforecastingandreliability.Finally,takingtheWSH complementationpilotdemonstrationbaseinthe
                  YalongRiverBasinastheresearchobject ,theframeworkproposedinthisstudyiscomparedwiththecurrentseven
                  state - of - the - arttime - seriesvariableforecastingmodelsonthefourdatasetsofrunoff ,windspeed,photovoltaics
                  andpowerload,respectively,toverifytheaccuracyandprobabilisticcomprehensiveperformance.
                  Keywords:wind - solar - hydropowerhybridsystem;probabilisticforecasting;deeplearning;featurecombination
                  optimization ;hyperparameteroptimization


                                                                                    (责任编辑:于福亮)





















                                                                                                —  9 6 3 —
   71   72   73   74   75   76   77   78   79   80   81