Page 107 - 2023年第54卷第2期
P. 107

[22] GUJ,WANGZ,KUEN J,etal.Recentadvancesinconvolutionalneuralnetworks[J].PatternRecognition,
                      2018,77:354 - 377.
                [23] ALEXKRIZHEVSKY,ILYASUTSKEVER,GEOFFREYEHINTON.ImageNetclassificationwithdeepconvolu
                       tionalneuralnetworks[J].CommunicationsoftheACM,2017,60(6):84 - 90
                [24] 卞景艺,刘秀丽,徐小力,等.基于多尺度深度卷积神经网络的故障诊断方法 [J].振 动 与 冲 击,2021,
                      40(18):204 - 211.
                [25] CHETC,DUANH F,LEEPJ.Transientwave - basedmethodsforanomalydetectioninfluidpipes:Areview
                       [J].MechanicalSystemsandSignalProcessing,2021,160:107874.
                [26] BRUNONEB,KARNEYBW,MECARELLIM,etal.Velocityprofilesandunsteadypipefrictionintransient
                       flow [J].JournalofWaterResourcesPlanningandManagement,2000,126(4):236 - 244.
                               '
                [27] V?TKOVSKYJP,BERGANTA,SIMPSONAR,etal.Systematicevaluationofone - dimensionalunsteadyfric
                       tionmodelsinsimplepipelines[J].JournalofHydraulicEngineering,2006,132(7):696 - 708.
                [28] 郭新蕾,杨开林,郭永鑫,等.管道系统泄漏检 测 的 瞬 变 水 击 压 力 波 法 [J].应 用 基 础 与 工 程 科 学 学 报,
                      2011,19(1):20 - 28.
                [29] GUOX,YANGK,GUOY.Leakdetectioninpipelinesbyexclusivelyfrequencydomainmethod[J].SCIENCE
                       CHINATechnologicalSciences.2012 ,55(3):743 - 752.
                [30] WANGX,LINJ,KERAMATA,etal.Matched - fieldprocessingforleaklocalizationinaviscoelasticpipe:An
                       experimentalstudy [J].MechanicalSystemsandSignalProcessing,2019,124:459 - 478.



                         Multi - scaleconvolutionalneuralnetworkmodelforpipelineleakdetection

                                TANZhen,GUOXinlei,LIJiazhen,GUOYongxin,PANJiajia
                                  (StateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,
                                 ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing 100038,China)


                  Abstract:Howtodetectpipelineleakseffectivelyisoneofthekeyandhotresearchtopicstobesolvedinthecon
                  structionofwater - savingsociety.Recently ,pipelineleakdetectionmethodsbasedondeeplearninghavebeende
                  velopedrapidly.Thispaperproposesapipelineleakdetectionmodelforpipelinesystemsbasedonmulti - scaleone -
                  dimensionalconvolutionalneuralnetwork(MS1DCNN)fortheproblemofinadequateextractionofleakfeaturesby
                  traditionalsingle - scaleconvolutionalneuralnetwork.Themodeladoptsmultipleconvolutionpathswithdifferent
                  convolutionkernelsizestoextractthefeaturesofpipelineleaksandtoclassifytheleakinformation.Basedonthe
                  classicalpipelinesystemlayout ,inordertovalidatethemodel,thetransientflowmodelwasusedtogeneratethree
                  waterpressuredatasetswhichwereusedtoidentifytheleaklocation ,leakageandunsteadyfrictioncoefficientre
                  spectivelyundervariouspipelineleakcases.Thesamplenumberswere39601 ,3980and4900.Themodelhas
                  beencomparedwithotherdeeplearningmethodsortraditionalmachinelearningmethodsliketraditionalone - di
                  mensionalconvolutionalneuralnetwork(1DCNN),BPneuralnetwork,supportvectormachine(SVM)andk -
                  NearestNeighbor (KNN).TheresultsshowthattheMS1DCNNmodelachieves99.96%,98.49% and100% of
                  theclassificationaccuracyforleaklocation ,leakageandunsteadyfrictioncoefficientunderthedatasets.Theaver
                  agepredictionaccuracyis0.31%,2.00%,1.27% and22.80% higherthanothermodels,respectively.Theaver
                  ageF 1 scoresofMS1DCNNmodelforeachdatasetsare99.2%,97.02% and100% respectivelyinthenoiseenvi
                  ronmentwithSNRof - 4 - 12dB.Theyare0.61%,2.3%,2.78% and28.59% higherthanthoseof1DCNN,BP
                  neuralnetwork ,SVM andKNN,respectively,whichprovesthepredictionperformanceofMS1DCNNmodel.The
                  modelpresentedinthispaperisapplicableforthesynchronouspredictionofpipelineleakageparametersandun
                  steadyfrictioncoefficient.
                  Keywords:pipelineleakdetection;transientflowmodel;unsteadyfrictioncoefficient;multi - scaleleakfeature;
                  convolutionalneuralnetwork


                                                                                    (责任编辑:李福田)


                                                                                                —  2 3 1 —
   102   103   104   105   106   107   108   109   110   111   112