Page 129 - 2024年第55卷第1期
P. 129

断裂分析模型。该方法继承了 SBFEM降维和半解析描述裂缝尖端奇异应力场等优点,拓展了 SBFEM
              在断裂分析中的应用,可高精度地求解裂缝动态应力强度因子,实现了重力坝地震断裂的高效模拟。为
              追踪裂缝路径,仅需增加较少的节点即可实现网格重剖分,无须人工干预,因而具有相当高的分析效率。
                  以 Koyna重力坝为例模拟了重力坝的地震断裂过程,并对模型的网格密度和裂缝扩展步长进行了
              敏感性分析。结果表明:( 1)网格密度对坝体地震响应和裂缝扩展形态影响很小,且较粗的多边形网
              格即可获得满意的计算结果;( 2)裂缝扩展步长取值对大坝最终破坏形态影响不大,但是步长越大裂
              缝扩展越快,从而导致大坝非线性地震响应存在差别。综上,本文方法可成为混凝土坝地震断裂分析
              中一种很有竞争力的数值分析技术,后续有望拓展至混凝土界面裂缝以及三维裂缝的动态扩展模拟。

              参 考 文 献:


                [ 1] 陈厚群.高混凝土坝抗震设计面临的挑战[J].水电与抽水蓄能,2017,3(2):1 - 13.
                [ 2] 张楚汉,金峰,王进廷,等.高混凝土坝抗震安全评价的关键问题与研究进展[J].水利学报,2016,47
                       (3):253 - 264.
                [ 3] YUSUFCalayir,MUHAMMETKaraton.Seismicfractureanalysisofconcretegravitydamsincludingdam - reservoir
                       interaction [J].Computers& Structures,2005,83:1595 - 1606.
                [ 4] 吴洋锋,汪洋,贾金生,等.高混凝土坝考虑水表面张力影响的水力劈裂研究[J].水利学报,2022,53
                       (12):1500 - 1511.
                [ 5] 方修君,金峰,王进廷.基于扩展有限元法的 Koyna重力坝地震开裂过程模拟[J].清华大学学报(自然科
                       学版),2009,48(12):2065 - 2069.
                [ 6] CHOPRAAK,PARTHASARATHIC.TheKoynaearthquakeandthedamagetoKoynaDam[J].Bulletinofthe
                       SeismologicalSocietyofAmerica,1973,63(2):381 - 397.
                [ 7] BATTAV,PEKAUOA.Applicationofboundaryelementanalysisformultipleseismiccrackinginconcretegravity
                       dams[J].EarthquakeEngineering& StructuralDynamics,1996,25:15 - 30.
                [ 8] ZHANGS,WANGG,YUX.Seismiccrackinganalysisofconcretegravitydamswithinitialcracksusingtheex
                       tendedfiniteelementmethod[J].EngineeringStructures,2013,56:528 - 543.
                [ 9] YILMAZTURKSM,ARICIY,BINICIB.SeismicassessmentofamonolithicRCCgravitydamincludingthreedi
                       mensionaldam - foundation - reservoirinteraction[J].EngineeringStructures,2015,100(10):137 - 148.
                [10] LIZ,WUZ,LUX,etal.Efficientseismicriskanalysisofgravitydamsviascreeningofintensitymeasuresand
                       simulatednon - parametricfragilitycurves [J].SoilDynamicsandEarthquakeEngineering,2022(1):152 - 183.
                [11] SHIZ,NAKANOM,NAKAMURAY,etal.Discretecrackanalysisofconcretegravitydamsbasedontheknown
                       inertiaforcefieldoflinearresponseanalysis[J].EngineeringFractureMechanics,2014,115:122 - 136.
                [12] YUC.Acoupledsmearedcrack - plasticitymodelinincrementalsequentiallylinearanalysisformixedfailuremodes
                       [J].Computers& Structures,2022,269:1 - 20.
                [13] BRANCOR,ANTUNESFV,COSTAJD.Areviewon3D - FEadaptiveremeshingtechniquesforcrackgrowth
                       modelling[J].EngineeringFractureMechanics,2015,141:170 - 195.
                [14] CHENZ,BAOH,DAIY,etal.NumericalpredictionbasedonXFEM formixed - modecrackgrowthpathand
                       fatiguelifeundercyclicoverload [J].InternationalJournalofFatigue,2022,162:106943.
                [15] SONGC.Asuper - elementforcrackanalysisinthetimedomain[J].InternationalJournalforNumericalMethods
                       inEngineering,2004,61(8):1332 - 1357.
                [16] YUKL,YANGZJ,LIH,etal.AmesoscalemodellingapproachcouplingSBFEM,continuousdamagephase -
                       fieldmodelanddiscretecohesivecrackmodelforconcretefracture [J].EngineeringFractureMechanics,2023,
                      278:109 - 130.
                [17] 胡哲文,李建波,李志远,等.阶梯地形下坝 - 库水 - 地基非线性相互作用的动力模型与多因素耦合模拟
                       [J].水利学报,2023,54(7):843 - 856.
                [18] SONGC,OOIET,NATARAJANS.Areviewofthescaledboundaryfiniteelementmethodfortwo - dimensional
                       linearelasticfracturemechanics [J].EngineeringFractureMechanics,2017,23:45 - 73.

                —  1 2  —
                     4
   124   125   126   127   128   129   130   131   132   133