Page 124 - 2024年第55卷第1期
P. 124
图 3 三角形网格转化为多边形网格示意
度,从而有效地提高断裂分析效率。具体的网格重剖分过程如下:
(1)图 4(a)为裂尖点附近三角形背景网格(黑线)和生成的多边形网格(蓝线),C为扩展前的裂
1
尖点,由式( 14)(15)根据裂缝应力强度因子计算裂缝扩展方向,再由所设定的裂纹扩展步长 Δ a得到
新的裂尖点 C,依据裂缝扩展轨迹 CC(红线)确定所切割的三角形背景网格(紫线包围区域);
2
1 2
( 2)找出与被切割三角形相连的周边三角形网格,连接这些三角形的外边界,所围成的区域即为
需要重新剖分的区域(图 4(b)中的红线包围区域);
(3)对图 4(b)中的红线包围区域重新剖分三角形网格,其中新生成的裂缝面成为新的三角形网格
边界的一部分,如图 4(c)所示。将重剖分的三角形网格和图 4(b)中的红线区域外原有三角形网格组
合形成新的三角形背景网格,之后再按照 4.1节给出的三角形转化为多边形网格过程生成新的多边形
网格。
图 4 多边形网格局部重剖分过程
4.3 裂缝动态接触模拟算法 大坝在地震往复作用下,
若不对裂缝面施加任何约束条件,可能出现裂缝面相互
嵌入的现象,即裂缝面法向相对位移出现负值。如图 5
所示,通过在裂缝面节点对之间施加接触弹簧以阻止裂
缝面的嵌入,其基本思想类似于罚函数法,即将接触约
束条件当作惩罚项加到系统的总泛函中,再对总泛函求
极小。动态断裂分析时,一旦判断裂缝面相互嵌入,在
动力平衡方程中加入接触弹簧刚度矩阵,不断调整其刚 图 5 裂缝面节点对施加接触弹簧示意
度迭代求解方程,直至满足裂缝面接触条件。接触弹簧刚度矩阵表达式为:
n 2 nn - n 2 - nn
s n
s
s n
s
nn n 2 - nn - n 2
s n
n
n
s n
珘 =
A
K k 珘 (16)
- n 2 - nn n 2 nn
s s n s s n
- nn - n 2 nn n 2
s n n s n n
— 1 1 9 —