Page 52 - 2024年第55卷第8期
P. 52
regulatoryknowledgegraph[J].ArXiv,2023.doi:10.48550?arxiv.2302.01842.
[16] KURATAG,XIANGB,ZHOUB.Improvedneuralnetwork - basedmulti - labelclassificationwithbetterinitializa
tionleveraginglabelco - occurrence[C]??Proceedingsofthe2016ConferenceoftheNorthAmericanChapterofthe
AssociationforComputationalLinguistics:HumanLanguageTechnologies.2016.
[17] ZHANGW,YANJ,WANGX,etal.Deepextrememulti - labellearning[C]??Proceedingsofthe2018ACM on
InternationalConferenceonMultimediaRetrieval.2018.
[18] 肖琳,陈博理,黄鑫,等.基于标签语义注意力的多标签文本分类[J].软件学报,2020,31(4):1079 -
1089.
[19] MAY,CAOY,HONGYC,etal.Largelanguagemodelisnotagoodfew - shotinformationextractor,buta
goodrerankerforhardsamples ![C]??EMNLP2023Findings.2023.
[20] LUY,LIUQ,DAID,etal.Unifiedstructuregenerationforuniversalinformationextraction[C]??Proceedingsof
the60thAnnualMeetingoftheAssociationforComputationalLinguistics(Volume1:LongPapers).2022.
[21] ZENGA,LIUX,DUZ,etal.GLM- 130B:AnopenbilingualPre - trainedmodel[C]??TheEleventhInterna
tionalConferenceonLearningRepresentations.2022.
[22] TANGH,FENGJ,ZHOUS.Genericontologiesfordigitalwatersheds[C]??Proceedingsofthe4thInternational
ConferenceonBigDataEconomyandInformationManagement.2023.
[23] SUNY,WANGS,FENGS,etal.ERNIE3.0:Large - scaleknowledgeenhancedpre - trainingforlanguageun
derstandingandgeneration [J].ArXiv,2021.doi:10.48550?arxiv.2112.12731.
LabeldesignmethodforfloodcontrolschedulingrulesassistedbyLLM
3
1,2
1,2
1,2
1,2
3
FENGJun ,LZhipeng ,FANZhendong,KONGXu,LUJiamin ,ZHOUSiyuan
(1.KeyLaboratoryofWaterBigDataTechnologyofMinistryofWaterResources,HohaiUniversity,Nanjing 211100,China;
2.CollegeofComputerandSoftware,HohaiUniversity,Nanjing 211100,China;
3.PowerChinaHuadongEngineeringCorporationLimited,Hangzhou 311122,China)
Abstract:Theinformationextractionoffloodcontroldispatchingrulesisofgreatsignificanceforfloodcontroldis
patchingautomation ,andthedesignoflabelingsystemsispivotalforinformationextraction.Traditionaldesignsof
tenhavecomprehensionbiasesandomissions ,leadingtoissueslikeovergeneralizationandincompleteness.Ad
dressingtheseimperfections ,thisresearchemphasizestheextractionofrulesinfloodschedulingtexts,proposing
anenhancedapproachforlabelingoptimization.LargeLanguageModels (LLM)areutilizedfortaskslikelabelrefine
mentandgeneration ,boostinglabelprecisionandclarity,andatechniqueforextractingentityrelationshiptriplets
isalsopresentedfordatasetswithmanylabels.Groupingthesetripletsenhancesextractionperformanceinlabel -
richdatasets.AvisualknowledgegraphforfloodcontrolschedulingusingNeo4jisalsodeveloped.Thisresearch
offersfoundationalinsightsforfutureworkinfloodcontrolschedulingknowledgeextraction.
Keywords:knowledgeextraction;labeldesign;floodcontrolscheduling;knowledgegraph;naturallanguage
processing
(责任编辑:耿庆斋)
— 9 3 —
0