Page 52 - 2024年第55卷第8期
P. 52

regulatoryknowledgegraph[J].ArXiv,2023.doi:10.48550?arxiv.2302.01842.
                [16] KURATAG,XIANGB,ZHOUB.Improvedneuralnetwork - basedmulti - labelclassificationwithbetterinitializa
                       tionleveraginglabelco - occurrence[C]??Proceedingsofthe2016ConferenceoftheNorthAmericanChapterofthe
                       AssociationforComputationalLinguistics:HumanLanguageTechnologies.2016.
                [17] ZHANGW,YANJ,WANGX,etal.Deepextrememulti - labellearning[C]??Proceedingsofthe2018ACM on
                       InternationalConferenceonMultimediaRetrieval.2018.
                [18] 肖琳,陈博理,黄鑫,等.基于标签语义注意力的多标签文本分类[J].软件学报,2020,31(4):1079 -
                       1089.
                [19] MAY,CAOY,HONGYC,etal.Largelanguagemodelisnotagoodfew - shotinformationextractor,buta
                       goodrerankerforhardsamples ![C]??EMNLP2023Findings.2023.
                [20] LUY,LIUQ,DAID,etal.Unifiedstructuregenerationforuniversalinformationextraction[C]??Proceedingsof
                       the60thAnnualMeetingoftheAssociationforComputationalLinguistics(Volume1:LongPapers).2022.
                [21] ZENGA,LIUX,DUZ,etal.GLM- 130B:AnopenbilingualPre - trainedmodel[C]??TheEleventhInterna
                       tionalConferenceonLearningRepresentations.2022.
                [22] TANGH,FENGJ,ZHOUS.Genericontologiesfordigitalwatersheds[C]??Proceedingsofthe4thInternational
                       ConferenceonBigDataEconomyandInformationManagement.2023.
                [23] SUNY,WANGS,FENGS,etal.ERNIE3.0:Large - scaleknowledgeenhancedpre - trainingforlanguageun
                       derstandingandgeneration [J].ArXiv,2021.doi:10.48550?arxiv.2112.12731.



                           LabeldesignmethodforfloodcontrolschedulingrulesassistedbyLLM

                                                                       3
                                                                                   1,2
                                                                                                   1,2
                             1,2
                                           1,2
                                                            3
                     FENGJun ,LZhipeng ,FANZhendong,KONGXu,LUJiamin ,ZHOUSiyuan
                    (1.KeyLaboratoryofWaterBigDataTechnologyofMinistryofWaterResources,HohaiUniversity,Nanjing 211100,China;
                                  2.CollegeofComputerandSoftware,HohaiUniversity,Nanjing 211100,China;
                                3.PowerChinaHuadongEngineeringCorporationLimited,Hangzhou 311122,China)
                  Abstract:Theinformationextractionoffloodcontroldispatchingrulesisofgreatsignificanceforfloodcontroldis
                  patchingautomation ,andthedesignoflabelingsystemsispivotalforinformationextraction.Traditionaldesignsof
                  tenhavecomprehensionbiasesandomissions ,leadingtoissueslikeovergeneralizationandincompleteness.Ad
                  dressingtheseimperfections ,thisresearchemphasizestheextractionofrulesinfloodschedulingtexts,proposing
                  anenhancedapproachforlabelingoptimization.LargeLanguageModels (LLM)areutilizedfortaskslikelabelrefine
                  mentandgeneration ,boostinglabelprecisionandclarity,andatechniqueforextractingentityrelationshiptriplets
                  isalsopresentedfordatasetswithmanylabels.Groupingthesetripletsenhancesextractionperformanceinlabel -
                  richdatasets.AvisualknowledgegraphforfloodcontrolschedulingusingNeo4jisalsodeveloped.Thisresearch
                  offersfoundationalinsightsforfutureworkinfloodcontrolschedulingknowledgeextraction.
                  Keywords:knowledgeextraction;labeldesign;floodcontrolscheduling;knowledgegraph;naturallanguage
                  processing


                                                                                    (责任编辑:耿庆斋)

















                —  9 3  —
                     0
   47   48   49   50   51   52   53   54   55   56   57