Page 14 - 2024年第55卷第9期
P. 14
Press,2003.
[21] ROWEISST,SAULLK.Nonlineardimensionalityreductionbylocallylinearembedding[J].Science,2000,
290(5500):2323 - 2326.
[22] HARTIGANJA,WONGM A.Algorithm as136:ak - meansclusteringalgorithm[J].JournaloftheRoyalSta
tisticalSociety ,1979,28(1):100 - 108.
Researchonfloodforecastingmethodinmountainoussmallwatershedsbasedon
machinelearningforidentifyingrainfalldynamicspatiotemporalfeatures
3
3,4
1,2
1,2
5
6
LIUYuanyuan ,LIUYesen ,LIUYang,LIUZhengfeng ,YANGWeitao,HUWencai
(1.StateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,ChinaInstituteof
WaterResourcesandHydropowerResearch,Beijing 100038,China;
2.ResearchCenteronFloodandDroughtDisasterReductionoftheMinistryofWaterResources,Beijing 100038,China;
3.MWRGeneralInstituteofWaterResourcesandHydropowerPlanningandDesign,Beijing 100120,China;
4.FujianWaterConservancyandHydropowerSurveyandDesignInstitute,Fuzhou 350001,China;
5.GuangxiZhuangAutonomousRegionWaterConservancyandElectricPowerSurveyandDesignInstituteCo.,Nanning 530023,China;
6.TheYi - Shu - SiRiverBasinAdministration,Xuzhou 221018,China)
Abstract:Themountainousregionexperiencesfast - flowingandhighlydestructivefloods,posingchallengesfor
accurateandtimelyforecasting.Enhancingtheaccuracyandleadtimeoffloodpredictioninmountainousareasisa
pressingissue.Addressingthisconcern ,thispaperproposesaninnovativefloodforecastingmethodbasedonma
chinelearningtechnology.Theapproachidentifieshistoricalrainfall - floodeventswiththemostsimilaritytothe
currentdynamicspatiotemporalfeaturesofrainfall ,employinga“learnfromthepasttopredictthepresent”strate
gy.Theresultsindicatethat,insmallwatershedswithminimalhumaninfluenceandabasinareaofapproximately
2
600km inmountainousregions,themethodnotonlypredictstheoveralltrendofrainfallbutalsoforecaststheasso
ciatedmountainousfloodprocessesunderthisrainfalltrend.Theaverageerrorsforpeakflow ,floodvolume,and
peaktimeare8.33%,14.27%,and1hour,respectively,meetingtheaccuracyrequirementsforfloodforecasting.
Distinguishedfromtraditionalfloodforecastingmethods ,thisapproachpredictsmountainousfloodsfrom theper
spectiveoftheoverallrainfalltrend,providingatargetedstrategyforfloodforecastinginsmallwatershedsinhilly
areas.
Keywords:artificialintelligence;manifoldlearning;spatiotemporalcharacteristicsofrainfall;floodforecasting
insmallwatershedsofmountainousregions
(责任编辑:耿庆斋)
0
— 1 1 9 —