Page 89 - 2024年第55卷第11期
P. 89

[16] SHANGY,LUS,GONGJ,etal.Improvedgeneticalgorithm foreconomicloaddispatchinhydropowerplants
                       andcomprehensiveperformancecomparisonwithdynamicprogrammingmethod [J].JournalofHydrology,2017,
                      554:306 - 316.
                [17] 周建中,李英海,肖舸,等.基于混合粒子群算法的梯级水电站多目标优化调度 [J].水 利 学 报,2010,
                      41(10):1212 - 1219.
                [18] 赵雪花,黄强,吴建华.蚁群算法 在 水 电 站 厂 内 经 济 运 行 中 的 应 用 [J].水 力 发 电 学 报,2009,28(2):
                      139 - 142,138.
                [19] 陈立华,梅亚东,董雅洁,等.改进遗传算法及其在水库群优化调度中的应用[J].水利学报,2008,39
                       (5):550 - 556.
                [20] SUTTONRS,BARTOAG.ReinforcementLearning:AnIntroduction[M].MITpress,2018.
                [21] CASTELLETTIA, PIANOSIF, RESTELLIM.A multiobjective reinforcementlearning approach to water
                       resourcessystemsoperation:Paretofrontierapproximationinasinglerun[J].WaterResourcesResearch,2013,
                      49(6):3476 - 3486.
                [22] 李文武,刘江鹏,蒋志强,等.基于 HSARSA( λ )算法的水库长期随机优化调度研究[J].水电能源科学,
                      2020,38(12):53 - 57.
                [23] JIANGW Y,LIUYQ,FANGGH,etal.Researchonshort - termoptimalschedulingofhydro - wind - solarmulti -
                       energypowersystem basedondeepreinforcementlearning [J].JournalofCleanerProduction,2023, 385.doi:
                      10.1016?j.jclepro.2022.135704.
                [24] ZENGY,WENX,TANQ,etal.Real - timeloaddispatchinhydropowerplantbasedonD3QN - PER[J].Jour
                       nalofHydrology ,2023,625:130019.
                [25] MNIH V,KAVUKCUOGLUK,SILVERD,etal.Human - levelcontrolthroughdeepreinforcementlearning[J].
                       Nature,2015,518(7540):529 - 533.




                     ResearchonoptimalloadallocationinhydropowerstationbasedonDQNalgorithm
                                                     1
                                       1,2
                                                                 1,2
                                                                                 1
                           TANQiaofeng ,SONGJiawei,WENXin ,ZENGYuxuan,WANGHao                 3
                          (1.HohaiUniversity,CollegeofWaterConservancy&HydropowerEngineering,Nanjing 210098,China;
                        2.HohaiUniversity,CooperativeInnovationCenterforWaterSafety&Hydro - Science,Nanjing 210098,China;
                                3.ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing 100038,China)
                  Abstract:Loadallocationofhydropowerstationisthebasisofautomaticpowergenerationcontrolsystem,andthe
                  conventionalmethodisdifficulttoadapttothecomplexanddiversifiedmulti - objectiveregulationandcontrolre
                  quirements.Thispaperconstructsaloaddistributionmodelthattakesintoaccountthedemandofwaterresources
                  andelectricpower ,anddevelopsanefficientsolutionalgorithmbasedontheDQN(DeepQ - Netwoek)algorithm.
                  TakingZhentoubaHydropowerStationasanexample ,thewaterconsumptionofpowergenerationinthedryperiod
                  isreducedby0.14%,whichimprovestheoperationeconomyofthepowerstation;andthevarianceofwaterlevel
                                                        2
                  variationinthefloodseasonisreducedby0.876m ,whicheffectivelysuppressesthewaterlevelfluctuationofthe
                  powerstation.Atthesametime ,theaccuracyofloaddistributioncalculationisimprovedfrom3 - 5MW to1MW,
                  andthecalculationefficiencyisimprovedby88.2 - 106.4times,whichcanprovidetechnicalsupportforthesched
                  ulingandoperationofcomplexhydropowersystemsinthenewperiod.
                  Keywords:loadallocation;reinforcementlearning;economicoperation;water - electricityregulation;efficient
                  decisionmaking

                                                                                    (责任编辑:王 婧)









                                                                                                   3
                                                                                              —   1 5 5 —
   84   85   86   87   88   89   90   91   92   93   94