Page 118 - 2025年第56卷第7期
        P. 118
     [32] 祁诗阳,沈宸,刘小标,等.基于小波变换的郑州降雨量与太阳黑子活动关系分析[J].现代地质,2023,
                      37(1):184 - 196.
                [33] TORRENCEC,COMPOGP.Apracticalguidetowaveletanalysis[J].BulletinoftheAmericanMeteorological
                       Society,1998,79(1):61 - 78.
                [34] 王秀杰,封桂敏,耿庆柱.小波分析组合模型在日径流预测中的应用研究[J].自然资源学报,2014,29
                       (5):885 - 893.
                [35] 李红燕,王志平,羊华,等.基于 Morlet小波分析的弥苴河径流量变化及其影响因素分析[J].人民珠江,
                      2021,42(3):53 - 60.
                [36] 梁中耀,刘永,盛虎,等.滇池水质 时 间 序 列 变 化 趋 势 识 别 及 特 征 分 析 [J].环 境 科 学 学 报,2014,34
                       (3):754 - 762.
                [37] CLEVELANDRB,CLEVELANDW S,TERPENNINGI.STL:aseasonal - trenddecompositionprocedurebased
                       onloess[J].JournalofOfficialStatistics,1990,6(1):3 - 73.
                [38] DRAGOMIRETSKIYK,ZOSSOD.Variationalmodedecomposition[J].IEEETransactionsonSignalProcessing,
                      2014,62(3):531 - 544.
                [39] 江星星,宋秋昱,杜贵 府,等.变 分 模 式 分 解 方 法 研 究 与 应 用 综 述 [J].仪 器 仪 表 学 报,2023,44(1):
                      55 - 73.
                [40] 徐岩,向益锋,马天祥.基于粒子群算法优化参数的 VMD - GRU短期电力负荷预测模型[J].华北电力大
                       学学报(自然科学版),2023,50(1):38 - 47.
                [41] PARKM J,HA R,KIM N W,etal.Assessmentoffutureclimateandvegetationcanopychangeimpactson
                       hydrologicalbehaviorofChungjudam watershedusingSWAT model [J].KSCE JournalofCivilEngineering,
                      2014,18(4):1185 - 1196.
                [42] YOOC,KIM J,YOONJ.Uncertaintyofarealaveragerainfallanditseffectonrunoffsimulation:Acasestudy
                       fortheChungju - dam basin ,Korea[J].KSCEJournalofCivilEngineering,2012,16(6):1085 - 1092.
                [43] KIM S,TACHIKAWAY,TAKARA K.Recentflooddisastersandprogressofdisastermanagementsystem in
                       Korea [J].AnnualsofDisasterPreventionResearchInstituteofKyotoUniversity,2007,50(B):15 - 31.
                          Atwo - stagedynamicdecomposition - prediction - reconstructionmodelfor
                                           medium- longterm runoffforecasting
                                                                                              4
                                                                    1
                                      1
                                                        1,2,3
                                                                               1
                          CHENXiaoze,WANGZhongjing         ,LIUDan,SHIYujia,KANGBoosik
                                (1.DepartmentofHydraulicEngineering,TsinghuaUniversity,Beijing 100084,China;
                          2.StateKeyLaboratoryofHydro - scienceandEngineering,TsinghuaUniversity,Beijing 100084,China;
                              3.SchoolofCivilandHydraulicEngineering,NingxiaUniversity,Yinchuan 750021,China;
                           4.DepartmentofCivil&EnvironmentalEngineering,DankookUniversity,Yongin 16890,SouthKorea)
                  Abstract:Medium - longtermrunoffforecastingisacriticalfoundationforoptimizingwaterresourcemanagement.
                  Withtheintensificationofclimatechange ,thevariabilityofrunoffhasincreased,makingtheforecastingmore
                  challenging.Toimprovetheaccuracyofrunoffforecastsandextendtheforecastperiod ,inthispaper,byintegrat
                  edSeasonalandTrenddecompositionusingLoess (STL),VariationalModeDecomposition(VMD)andthedeep
                  learningmodelInformer ,atwo - stagedynamicdecomposition - prediction - reconstructionmodel(STL - VMD - In
                  former)formedium - longtermrunoffforecastwasdevelopment.TheapplicationattheShixialihydrologicalstation
                  ofYongdingRiverBasinshowsthattheforecastNash - Sutcliffeefficiency(NSE)reaches0.897,0.843,and0.
                  796forpredictionperiodsof1 ,3,and6months,respectively,indicatingtheproposedmethodwiththepotential
                  inseparatingthetimeseries ,extendingtheforecastinghorizon,andimprovingforecastaccuracy.Theapproach
                  willbenefittothemedium - longtermrunoffforecasting.
                  Keywords:runoffforecast;STL;VMD;Informer;YongdingRiver
                                                                                    (责任编辑:韩 昆)
                —  9 4  —
                     4





