Page 119 - 2025年第56卷第8期
P. 119

[32] 刘戎.螺旋隧道施工区域污染扩散机制及控制技术研究[D].重庆:重庆大学,2020.
                [33] 中国水利水电第十四工程局有限公司.水工建筑物地下工程开挖施工技术规范:DL?T5099—2011[S].北
                       京:中国水利水电出版社,2011.
                [34] 王晓玲,李清梦,刘宗显,等.融合时频空间特征的土石坝地震易损性分析改进 MLP模型研究[J].水利
                       学报,2024,55(1):13 - 23.
                [35] 王晓玲,李克,张宗亮,等.耦合 ALO - LSTM 和特征注意力机制的土石坝渗压预测模型 [J].水利学报,
                      2022,53(4):403 - 412.
                [36] 班多晗,吕鑫,王鑫元.基于一维混沌映射的高效图像加密算法[J].计算机科学,2020,47(4):278 - 284.
                [37] 何庆,罗仕杭.混合改进策略的黑猩猩优化算法及其机械应用[J].控制与决策,2023,38(2):354 - 364.
                [38] JASK,DODAGOUDARGR.Explainablemachinelearningmodelforliquefactionpotentialassessmentofsoilsu
                       singXGBoost - SHAP [J].SoilDynamicsandEarthquakeEngineering,2023,165:107662.



                              IHPO- XDFrobustpredictionmodelforventilationfrequencyof
                                             undergroundpowerhousecaverns

                                  1
                                                                                       1
                                                                                                    1
                                                                         2
                                                  1
                                                           1
                    WANGXiaoling,GUOZhangchao,YUJia,YUHongling,LIUChangxin,WUBinping
                 (1.StateKeyLaboratoryofHydraulicEngineeringIntelligentConstructionandOperation,TianjinUniversity,Tianjin 300072,China;
                         2.CollegeofWaterResourcesandCivilEngineering,ChinaAgriculturalUniversity,Beijing 100083,China)
                  Abstract:Intheconstructionofhydropowerundergroundpowerplantcaverncomplex,thearrangementofthecav
                  ernsiscomplex ,withmanydeadendsanddisorderedairflowpatterns.Determininganappropriateconstruction
                  ventilationfrequencyiscrucialforensuringsafety.Duringtheconstructionprocessoftheundergroundpowerplant
                  caverncomplex ,electromagneticinterferenceandblastvibrationoftenresultinnoisyandmissingdatainenviron
                  mentalmonitoring ,andexistingmachinelearning - basedconstructionventilationfrequencypredictionmodelsare
                  highlysensitivetooutliers ,withpoorrobustness.Toaddresstheseissues,thispaperproposesanIHPO - XDFro
                  bustpredictionmodelforconstructionventilationfrequencyinundergroundpowerplantcaverncomplexes.First ,a
                  deepforest (DF)networkwithstronguniversallearningabilityandrobustnessisselectedasthebasisforventilation
                  frequencyprediction.Second ,therandom forestbaselearnerinthedeepforestisimprovedtoextremegradient
                  boostingtree (XGBoost),andtheefficientgradientboostingmechanismandregularizationstrategyofXGboostare
                  usedtofurtherenhancetherobustnessandgeneralizationabilityofthemodel.Furthermore ,theImprovedHunter -
                  PreyOptimization(IHPO)algorithmwasadoptedtooptimizethehyperparametersoftheDFmodel,whichcould
                  compensatefortheshortcomingsoftraditionalmanualparametertuningandobtaintheoptimalhyperparameters,
                  therebyminingandenhancingtheinherentrobustnessofthemodelandrevealingthecomplexnonlinearmappingre
                  lationshipsbetweenthepollutantconcentration ,temperature,windspeed,andexcavationvolumeandthecon
                  structionventilationfrequency.Furthermore ,theIHPO - XDFmodelwasanalyzedusingtheSHapleyAdditiveex
                  Planations (SHAP)forinterpretability,whichcouldminethekeyfeaturesthataffectedthepredictionresultsofthe
                  constructionventilationfrequencyandenhancethecredibilityoftheventilationfrequencypredictionmodel.The
                  casestudyshowedthatcomparedwiththeXGBoost - improvedDFmodel,thetraditionalDF,theGradientBoosting
                  DecisionTree (GBDT),andtheDecisionTree(DT)models,theproposedmodelachievedarespectiveimprove
                  mentof3.48%,5.01%,13.13%,and13.48% inpredictionaccuracy,andtheIHPO - XDFmodelshowedthe
                  smallestdecreaseinpredictionaccuracyintheabnormalvalueenvironment,atonly2.17%,demonstratinggood
                  robustness.Meanwhile ,theSHAP - basedinterpretabilityanalysisofthepredictionresultsindicatedthattheIHPO -
                  XDFalgorithmhadhighcredibility.
                  Keywords:undergroundpowerhousecaverngroup;robustpredictionofventilationfrequency;deepforestmodel;
                  XGBoost;improvedhunter - preyalgorithm;interpretability

                                                                                    (责任编辑:韩 昆)





                                                                                                   0
                                                                                              —   1 8 3 —
   114   115   116   117   118   119   120   121   122   123   124