Page 60 - 2025年第56卷第8期
P. 60

[ 10] 徐俊杰,杨志勇,高希超,等 .  长江流域典型城市暴雨雨型特征分析[J]  中国水利水电科学研究院学报(中
                                                                               .
                      英文),2023,21(1):1-9,22.
               [ 11] 王浩,杜伟,刘家宏,等 .  基于知识图谱的城市洪涝灾害链推演及时空特性解析[J]  水科学进展,2024,35
                                                                                        .
                      (2):185-196.
               [ 12] 王浩,赵铜铁钢,田雨,等 .  考虑时间变化的洪涝灾害损失评估[J]  水利学报,2024,55(2):127-136.
                                                                           .
                                                                             .
               [ 13] 沈平,余小嘉,魏炜,等 .  广东省突发事件预警信息发布特征分析[J]  广东气象,2023,8(20):53-55.
               [ 14] 刘媛媛,刘业森,刘洋,等 .  基于机器学习降雨动态时空特征识别山丘区小流域洪水预报方法研究[J]  水利
                                                                                                      .
                      学报,2024,55(9):1009-1019.
               [ 15] 佚名 . 中国安科院安全生产风险监测预警中心针对台风、强降雨区域发布预警[J]  中国安全生产科学技术,
                                                                                      .
                      2021,17(9):38.
               [ 16] 罗堂松,姚岳来,邵学强 .  气象预警纳入防汛应急响应启动条件的思考与建议——以浙江省为例[J]  中国防
                                                                                                    .
                      汛抗旱,2023,33(7):79-82.
               [ 17] 张鹏,张云霞,汪洋,等 .  1978—2020 年中国台风灾害灾情时空分布格局及影响因素分析[J]  热带地理,
                                                                                                 .
                      2024,44(6):1047-1063.
               [ 18] 叶龙彬,谌芸,李晟祺,等 .  1513 号台风“苏迪罗”不同阶段降水的中尺度特征分析[J]  热带气象学报,
                                                                                              .
                      2018,34(3):371-382.
               [ 19] 张宸赫 .  灾害救援现场应急通讯研究[J]  数字通信世界, 2018(3):271.
                                                      .
               [ 20] 梅超,陈宇枫,刘家宏,等 .  基于情景模拟的城市内涝对道路交通的影响评估[J]  水资源保护,2022,38
                                                                                       .
                      (6):31-38.
                                                                                         .
               [ 21] 张岚,艾文文,罗晓春,等 .  气象灾害下网络信息传播模式研究——以台风为例[J]  气象科学,2020,40
                      (6):868-874.
               [ 22] 刘扬,张立生,赵慧霞 .  中国台风灾害损失与气象要素的关系分析[J]  气象与环境科学,2023,46(4):1-6.
                                                                            .
                                                                             .
               [ 23] 聂明 .  安徽省泾县地质灾害空间分布及对周边村民生活的影响分析[J]  西部资源,2023,6(28):136-138.



                    Research on multi-source data analysis and disaster trend of chain-induced disasters:
                                             A case study of typhoon "DuSuri"





                        JIN Wenbo,LIU Yongqiang,FANG Yudong,WANG Pengfei,XUE Ming,LIU Leilei


                                    (Emergency Management Department Big Data Center,Beijing  100010)


                Abstract:In the summer of 2023,due to the landing of typhoon 'Dusuri' and the interaction between typhoon water



                vapor northward and cold air,China’s southeast,East,North and northeast regions suffered serious natural disas‐

                ters. Based on the typical typhoon disaster chain,this paper analyzes the spatio-temporal distribution and variation

                characteristics of multi-source heterogeneous data such as high-level meteorological early warning,disaster report‐
                ing,tower monitoring,traffic monitoring and public opinion heat used in the process of disaster accident scheduling



                from the perspective of data correlation,and compares the trend correlation and time deviation between various types
                of information and the change of actual disaster severity. The results show that the peak value of the tower monitoring


                data is close to the peak value of the disaster,and the offset is 0.35-2.21d less than that of other types of data,which
                can be used to quickly analyze the overall disaster situation of natural disasters. The traffic monitoring data curve has
                the highest degree of it with the disaster loss curve and can better reflect the local disaster loss changes and post-

                disaster  recovery  in  the  process  of  mountain  torrents,geological  disasters,watershed  floods,and  other  disasters.



                Using traffic big data monitoring,tower big data monitoring,etc. as core elements can provide auxiliary data for disas‐

                ter assessment and post-disaster reconstruction.


                Keywords:typhoon disaster chain;command and dispatch;multi-source data;data analysis;data application



                                                                                     (责任编辑:韩  昆)
                — 1024   —
   55   56   57   58   59   60   61   62   63   64   65