Page 107 - 2022年第53卷第8期
P. 107
一步概率转移矩阵式(16)和(17)
H(u,v) =P(X = k,A = vX= m,A= u) (15)
t t + 1 t + 1 t t
λ (1 - β ) + [1 - λ (1 - β )] π 0 (1 - β )(1 - λ ) π 1
H = (16)
0
β (1 - λ ) π 0 βλπ 0
βλπ 1 β (1 - λ ) π 1
H = (17)
1
(
(1 - β )(1 - λ ) π 0 λ 1 - β ) + [1 - λ (1 - β )] π 1
3.3 DAR(1)和 DARMA(1,1)模型检验 DAR(1)和 DARMA(1,1)模型检验主要包括 ACF、干湿
游程的理论值与样本值拟合效果评估。
(1)自相关系数 ACF检验。样本经验自相关函数是根据干日和湿日的序列计算的,即 0和 1序
列 [26] ,计算公式为
N- k N
- 1
2
k ∑
x)(x - 珋]∑
x)
r= [ (x - 珋 t + k x) [ (x - 珋 ] (18)
t
t
t =1 t =1
x为x序列的均值。
式中:x为 0或 1序列;N为样本容量; 珋
t t
将通过式(18)计算的样本序列 ACF值与式(5)和式(13)计算的理论 ACF值进行对比分析检验。
(2)干湿游程检验。游程定义为同一类型事件的持续,它在开始和结束时由其他类型的事件界定。
在模拟日降水序列时,DAR(1)的理论干湿游程长度数学表示为
P(T = t) =P(X = 0 ,X = 1 ,…,X= 1 ,X = 0 X = 0 ,X = 1 ) (19)
1
t
1
t + 1
0
0
1
P(T = t) =P(X = 1,X = 0,…,X= 0,X = 1 X = 0,X = 1) (20)
1
t
t + 1
0
0
1
0
采用 DAR(1)模型的一步转移概率矩阵简化游程计算,可得理论干湿游程长度概率分布为
t - 1
P(T = t) =p (1,1)[1 - p(1,1)] (21)
1
t - 1
P(T = t) =p (0,0)[1 - p(0,0)] (22)
0
DARMA(1,1)的理论湿游程长度数学表示为
P(T = t) =P(X = 0 ,X = 1 ,…,X= 1 ,X = 0X = 0 ,X = 1 )
1 0 1 t t + 1 0 1
P(X = 0 ,X = 1 ,…,X= 1 ,X = 0 ) (23)
0
t
t + 1
1
=
P(X = 0,X = 1)
1
0
由X与A构成的一阶二元 Markov链可得
t
t
P(X = 0,X = 1) =P(X= 0,A= 0)P(X = 1,A = 0A= 0)
0 1 t t t + 1 t + 1 t
+ P(X= 0,A= 0)P(X = 1,A = 1A= 0)
t t t + 1 t + 1 t
+ P(X= 0 ,A= 1 )P(X = 1 ,A = 0A= 1 )
t t t + 1 t + 1 t
(24)
+ P(X= 0 ,A= 1 )P(X = 1 ,A = 1A= 1 )
t t t + 1 t + 1 t
][H(0,0) + H(0,1)]
0 0 1 1
=[H(0,0) π 0 + H(1,0) π 1
][H(1,0) + H(1,1)]
+ [H(0,1) π 0 + H(1,1) π 1
0 0 1 1
P(X = 0 ,X = 1 ,…,X= 1 ,X = 0 )
t
1
0
t + 1
n
n + 1
][H(0) - H (0)] (25)
0 0 1 1
=[H(0,0) π 0 + H(1,0) π 1
n + 1
n
][H (1) - H (1)]
+ [H(0,1) π 0 + H(1,1) π 1 1 1
0
0
化简式( 24)和(25)可得 DARMA(1,1)的理论湿游程公式为:
1 1 1 1
P(X = 0 ,X = 1 ) = ∑ H(i,0) π i ∑ H(0,j) + H(m,1) π m ∑ H(1,n) (26)
∑
0 1 0 1 0 1
i =0 j =0 m=0 n =0
P(X = 0 ,X = 1 ,…,X= 1 ,X = 0 )
t + 1
1
t
0
(27)
n
n + 1
n
n + 1
=P[W = 0 ][H(0) - H (0)] + P[W = 1 ][H(1) - H (1)]
0 1 1 0 1 1
n
];H(j) =
0 0 0 0 0 0 1
式中:P[W = 0] = [H(0,0) π 0 + H(1,0) π 1 ];P[W = 1] = [H(0,1) π 0 + H(1,1) π 1
n
n
H(j,0) + H(j,1),j = 0 ,1
1 1
4
— 9 9 —