Page 88 - 2022年第53卷第8期
P. 88

forseasonal - scalewinterprecipitationpredictionsovernorthIndia[J].InternationalJournalofClimatology,2019,
                      39(3):1504 - 1516.
                [ 5] WOOTTENAM,DIXONKW,DAS,etal.Statisticallydownscaledprecipitationsensitivitytogriddedobserva
                       tiondataanddownscalingtechnique[J].InternationalJournalofClimatology,2020,41(2):980 - 1001.
                [ 6] 尹家波,郭生练,王 俊,等.基 于 贝 叶 斯 模 式 平 均 方 法 融 合 多 源 数 据 的 水 文 模 拟 研 究 [J].水 利 学 报,
                      2020,51(11):1335 - 1346.
                [ 7] WILBYRL,WIGLEYT.Downscalinggeneralcirculationmodeloutput:areviewofmethodsandlimitations[J].
                       ProgressinPhysicalGeography ,1997,21(4):530 - 548.
                [ 8] 杜军凯,贾仰 文,李 晓 星,等.基 于 TRMM 卫 星 降 水 的 太 行 山 区 降 水 时 空 分 布 格 局 [J].水 科 学 进 展,
                      2019,30(1):1 - 13.
                [ 9] JIASF,ZHUW B,LUAF,etal.Astatisticalspatialdownscalingalgorithm ofTRMM precipitationbasedon
                       NDVIandDEM intheQaidamBasinofChina [J].RemoteSensingofEnvironment,2011,115(12):3069 - 3079.
                [10] CANNONAJ,SOBIESR,MURDOCK TQ.BiascorrectionofGCM precipitationbyquantilemapping:How
                       welldomethodspreservechangesinquantilesandextremes ?[J].JournalofClimate,2015,28(17):6938
                       - 6959.
                [11] ZHENGX,ZHUJ.AmethodologicalapproachforspatialdownscalingofTRMM precipitationdatainNorthChina
                       [J].InternationalJournalofRemoteSensing,2015,36(1):144 - 169.
                [12] CHAOLJ,ZHANGK,LIZJ,etal.Geographicallyweightedregressionbasedmethodsformergingsatelliteand
                       gaugeprecipitation [J].JournalofHydrology,2018,558:275 - 289.
                [13] KYRIAKIDISPC.Ageostatisticalframeworkforarea - to - pointspatialinterpolation[J].GeographicalAnalysis,
                      2004,36(3):259 - 289.
                [14] GOOVAERTSP.Krigingandsemivariogram deconvolutioninthepresenceofirregulargeographicalunits[J].
                       MathematicalGeosciences,2008,40(1):101 - 128.
                [15] LIUX,LVX,ZHANGZJ.Progressintheapplicationofgeostatisticsdownscalingmethodsinthefieldofpublic
                       health [J].JournalofPhysics:ConferenceSeries,2021,1802(3):032095.
                [16] YOOEH,KYRIAKIDISPC.Area - to - pointKrigingwithinequality - typedata[J].JournalofGeographicalSys
                       tems,2006,8(4):357 - 390.
                [17] WANGQM,SHIW Z,PETERM,etal.DownscalingMODISimageswitharea - to - pointregressionkriging[J].
                       RemoteSensingofEnvironment ,2015,166:191 - 204.
                [18] HUM G,HUANGYW.Atakrig:anRpackageformultivariatearea - to - areaandarea - to - pointkrigingpredic
                       tions [J].Computers& Geosciences,2020,139:104471.
                [19] JINY,GEY,WANGJH,etal.DownscalingAMSR - 2soilmoisturedatawithgeographicallyweightedarea - to -
                       arearegressionkriging [J].IEEETransactionsonGeoscience& RemoteSensing,2018,56(4):2362 - 2376.
                [20] NAEIMEHOSSADATA,TOHIDJK,ALIS,etal.Area - to - Areapoissonkrigingandspatialbayesiananalysis
                       inmappingofgastriccancerincidenceinIran [J].AsianPacificJournalofCancerPrevention,2016,17(10):
                      4587 - 4590.
                [21] 胡庆芳.基于多源信息的降水空间估计及其水文应用研究[D].北京:清华大学,2013.
                [22] BECKHE,VANDAIJM,VINCENZOL,etal.MSWEP:3 - hourly0.25°globalgriddedprecipitation(1979 -
                       2015)bymerginggauge, satellite, andreanalysisdata[J].HydrologyandEarthSystem Sciences,2017,21
                       (1):589 - 615.
                [23] 彭振华,李艳忠,余文君,等.遥感降水产品在 中 国 不 同 气 候 区 的 适 用 性 研 究 [J].地 球 信 息 科 学 学 报,
                      2021,23(7):1296 - 1311.
                [24] 王圆圆,郭徵,李贵才,等.基于广义加性模型估算 1979 - 2014年三峡库区降水及其特征分析[J].地理
                       学报,2017,72(7):1207 - 1220.
                [25] BAIKJ, PARK J, RYU D, etal.Geospatialblendingtoimprovespatialmappingofprecipitationwithhigh
                       spatialresolutionbymergingsatellite - basedandground - baseddata [J].HydrologicalProcesses, 2016, 30
                       (16):2789 - 2803.




                                                                                                —  9 7 5 —
   83   84   85   86   87   88   89   90   91   92   93