Page 68 - 2022年第53卷第10期
P. 68

[26] BUF.Anefficientfuzzyc - meansapproachbasedoncanonicalpolyadicdecompositionforclusteringbigdatainIoT
                       [J].FutureGenerationComputerSystems,2018,88:675 - 682.
                [27] PALNR,BEZDEKJC.Onclustervalidityforthefuzzyc - meansmodel[J].IEEETransactionsonFuzzySys
                       tems,2002,3(3):370 - 379.
                [28] DINGY,FUX.Kernel - basedfuzzyc - meansclusteringalgorithm basedongeneticalgorithm[J].Neurocomput
                       ing,2016,188:233 - 238.
                [29] MANIMALAK,DAVIDIG,SELVIK.AnoveldataselectiontechniqueusingfuzzyC - meansclusteringtoen
                       hanceSVM- basedpowerqualityclassification [J].SoftComputing,2015,19(11):3123 - 3144.
                [30] 朱素霞,祖宏亮,孙广路.一种基于空间信息的 FSICM 图像分割算法 [J].哈尔滨理工大学学报,2020,
                      25(4):101 - 108.
                [31] ATANASSOVK.Intuitionisticfuzzysets[J].InternationalJournalBioautomation,2016,20:1.
                [32] SUGENOM.FuzzyMeasuresandFuzzyIntegrals:ASurvey[M].MorganKaufmann,1993.
                [33] 王娜,李霞.一种新的改进 Canny边缘检测算法[J].深圳大学学报,2005(2):149 - 153.
                [34] KEMENYJM,DEVGANA,HAGAMANRM.Analysisofrockfragmentationusingdigitalimageprocessing[J].
                       JournalofGeotechnicalandGeoenvironmentalEngineering ,1993,119(7):1144 - 1160.
                [35] KEMENY,JOHNM,AUTHORA.Practicaltechniquefordeterminingthesizedistributionofblastedbenches,
                       wastedumpsandheapleachsites[J].MiningEngineering,1994,46(11):1281 - 1284.
                [36] HARDYAJ,RYANTM,KEMENYJM.Blocksizedistributionofinsiturockmassesusingdigitalimagepro
                       cessingofdrillcore [J].InternationalJournalofRockMechanicsandMiningSciences&GeomechanicsAbstracts,
                      1997,34(2):303 - 307.



                            Intelligentdetectionmethodformaterialqualificationofearth - rock
                                          dam basedondigitalimageprocessing

                                                    1
                                                               2
                                                                                          2
                                         1
                                                                             3
                               ZHAOYufei,LIUBiao,WANGYi,MENGLiang,LIUBiwang
                         (1.ChinaStateKeyLaboratoryofSimulationandRegulationofWaterCycleinRiverBasin,ChinaInstituteof
                                      WaterResourcesandHydropowerResearch ,Beijing 100038,China;
                   2.SinohydroBureau8Co.,Ltd.,Changsha 410007,China;3.SinohydroBureau6Co.,Ltd.,Shenyang 110179,China)
                  Abstract:Thequalificationtestingofearth - rockdammaterialsisusuallyrealizedbyjudgingwhetherthegradation
                  characteristicparametersobtainedfromon - sitescreeningtestmeetthedesignrequirements.However ,themethod
                  ofobtainingthegradationcharacteristicparametersthroughthetesthassomeshortcomings,suchaslowsampling
                  rate ,cumbersomeoperationprocessandpoorintelligentperception,resultinginpoorrepresentativenessofthetes
                  tingresults.Inordertoimprovetheintelligentdetectionofdammaterialgradationparameters,relyingontheima
                  gesandgradationdataatthetestlocationofonepumpedstoragepowerstationinLiaoningProvince ,theintuitionis
                  ticfuzzy C - meansclusteringalgorithm fusedwithspatialinformation(SIFCM)isusedtosegmenttheimageof
                  earth - rockdam materials.Next,the3D volumereconstructionofearth - rockdam materialisachievedbythe
                  equivalentellipsoidalvolumemethod.Thenthegradationcharacteristiccurveofdammaterialunderrealconditions
                  isobtainedthroughthegradationcorrectionmodelbasedonBPneuralnetwork.Finally ,fourevaluationindexesof
                  dam materialqualificationareobtained : maximum particlesize, P5content, curvaturecoefficientC c , and
                  unevencoefficient C u .Thepracticalengineeringapplicationshowsthattheintelligentidentificationandcorrection
                  modelofdammaterialgradationcharacteristicsbasedontheSIFCM_BPalgorithmestablishedinthispaperhashigh
                  identificationaccuracy.Themethodinthispaperprovidesanimportantsupportfortherapididentificationofdam
                  materialqualificationbeforethecompactionconstructionandthereal - timeevaluationofdam materialcompaction
                  characteristicsduringconstruction.
                  Keywords:materialgradationdetectionofearth - rockdam;digitalimageprocessing;SIFCM algorithm;gradation
                  correctionmodel;dammaterialqualificationdetection
                                                                                    (责任编辑:李 娜)


                —  1 2 6 —
                     0
   63   64   65   66   67   68   69   70   71   72   73